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Abstract  
Some applications such as identification or Monte Carlo based uncertainty quantification often require simple 
analytical formulas that are fast to evaluate. Approximate closed-form solutions for the natural frequencies of free 
orthotropic plates have been developed and have a wide range of applicability, but they are not very accurate. For 
moderate ranges of plate parameters, such as those needed for identifying material properties from vibration tests, 
good accuracy can be achieved by using response surface methodology combined with dimensional analysis. This 
paper first demonstrates that such a response surface can be much more accurate then the approximate analytical 
solutions even for relatively large ranges of the material and geometric parameters. Second it compares the 
accuracy of the elastic constants identified from experiments using the two approximations. It demonstrates the 
advantage of high fidelity approximations in vibration-based elastic constants identification. For a least squares 
identification approach, the approximate analytical solution led to physically implausible properties, while the 
high-fidelity response surface approximation obtained reasonable estimates. 
 
Keywords: response surface approximation, nondimensionalization, natural frequencies, composites, 
identification 
 
 
 
 
1. Introduction 
 
Plate vibration has been frequently used for identifying the elastic material parameters of a plate [1], especially 
composite laminates. The identification is usually done with free-hanging plates in order to avoid 
difficult-to-model boundary conditions. Bayesian statistical identification approaches [2] have the advantage of 
handling different sources of uncertainty in the identification procedure. They can also provide confidence 
intervals and correlation information on the identified properties. However, the Bayesian method can require 
Monte Carlo simulation which implies large number of vibration calculations for many combinations of the 
uncertain parameters such as geometry, material parameters, and measurement errors. Numerical solutions (such 
as finite elements) for free plate vibration natural frequencies are too slow to be used in such a context. 
Accordingly there is a need for simple approximate analytical formulas that can be evaluated very quickly. 
 
A simple, closed-form approximate analytical solution for the vibration problem of orthotropic plates with free 
boundary conditions was proposed by Dickinson [3]. This solution is applicable to wide ranges of geometries and 
materials, but its accuracy might not be sufficient for identification purposes. The aim of the present paper is 
twofold. First we seek to develop a procedure for a high fidelity, analytical, approximate formula for the natural 
frequencies of free orthotropic plates based on response surface (RS) methodology. To achieve the desired fidelity 
the response surface method is combined with dimensional analysis. Our second goal is to compare the effect of 
the approximation fidelity on the identification results. For this purpose we compare the results of a least squares 
identification approach using the high fidelity RS approximation and the low fidelity closed-form frequency 
approximations. This is demonstrated by using experimental data obtained by Pedersen and Fredriksen [4]. 
 
In Section 2 we give a quick overview of the approximate analytical solution developed by Dickinson. In Section 3 
we apply dimensional analysis to determine the variables of the response surface approximations (RSA) that lead 
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to the best accuracy. In Section 4 we construct the design of experiment for the RSAs and finally in Section 5 we 
compare their fidelity to finite element analyses and to that of the analytical solution by Dickinson. In Section 6 we 
present the identification results using the high fidelity approximations and using the low fidelity approximate 
analytical solution. We provide concluding remarks in Section 7. 
 
2. Existing analytical frequency approximations 
 
The only simple approximate analytical formula for free vibration of orthotropic plates the authors could find was 
by Dickinson [3], who applied characteristic beam functions in Rayleigh’s method to obtain an approximate 
formula for the flexural vibration of specially orthotropic plates. The formula for free boundary conditions on all 
four edges is restated below for convenience. 
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where fmn is the natural frequency of the mode with wave numbers m and n; ρ is the density of the plate; a, b, h its 
length, width respectively thickness and Dij the plate flexural rigidities (for detailed expressions of the Dij refer to 
[5]). Gi, Hi, Ji are constants, depending only on the mode numbers m and n, whose expressions are given in Table 1. 
 
Note that determining the wave number of an experimentally or numerically obtained mode is not always 
straightforward. In general, the mode number m, respectively n, can be obtained by adding one to the number of 
nodal lines perpendicular to the edge x respectively y (i.e. it is the number of half wave length in each direction). 
There are however exceptions, notably for low mode numbers. For a detailed study of the modes and associated 
mode numbers of free plates refer to [6].  
 
Table 1: Expression of the coefficients in the approximate formula for natural frequencies of Eq. 1. 
Mode index i Gi Hi Ji 
1 0 0 0 
2 0 0 1.216 
3 1.506 1.248 5.017 
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Dickinson’s simple analytical expression is computationally inexpensive, thus a priori suitable for use in statistical 
methods which require its repeated use a large number of times. However the fidelity of the approximation must 
also be acceptable for such a use. Typically this analytical approximation was reported to be within 5% of the exact 
numerical solution [7]. It is not clear whether this accuracy is sufficient when used for identifying accurate elastic 
constants from vibration experiments. Therefore, in the next sections we will also develop more accurate response 
surface approximations of the natural frequencies. 
 
3. Determining nondimensional variables for the RSA 
 
Response surface methodology, also called surrogate modeling, is a technique used to approximate the response of 
a process which is known only in a finite and usually small number of points. The points where the response is 
known, which constitute the design of experiments (DoE), are fitted with a particular function depending on the 
RSA type used. A common RS type is the polynomial response surface (PRS), which uses least-square fit to obtain 
a polynomial approximation. For more details on RSA techniques refer to [8].  
 
For elastic constants identification, we propose to fit to finite element simulations, PRS of the natural frequencies 
of the plate in terms of the elastic constants and parameters that may have some uncertainty in their values : ρ, a, b, 
h and the four Dij.. We could directly construct a polynomial response surface as a function of these individual 
model parameters. However, the accuracy of the RSA is generally improved and the number of required 
simulations is reduced if the number of variables is reduced by using the nondimensional parameters 
characterizing the problem [9]. To find these parameters we nondimensionalize the equations describing the 
vibration of a symmetric, specially orthotropic laminate. 
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where w is the out of plane displacement. 
 
Boundary conditions: 
On edge x = 0 and x = a (denoted x = 0;a):  
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On edge y = 0 and y = b (denoted y = 0;b):  
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This vibration problem involves 11 variables to which we add the variable of the natural frequencies fmn that we 
seek, so a total of 12 variables for the problem of determining the plate’s natural frequency (see Table 2). 
 
Table 2: Variables involved in the vibration problem and their units 
Variable fmn w x y a b t ρh D11   D12 D22 D66 

Unit 
1
s  

m m m m m s 2

kg
m  

2

2

kg m
s
⋅

 

2

2
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⋅

 

2

2

kg m
s
⋅

 

2

2

kg m
s
⋅

 
 
These 12 variables involve 3 dimension groups (m, kg, s). According to the Vaschy-Buckingham theorem [10][11] 
we know that we can have a minimum of 12 – 3 = 9 nondimensional groups. 
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ρτ = , which is a characteristic time constant, the 9 nondimensional groups are given in Table 3: 

 
Table 3: Nondimensional parameters characterizing the vibration problem 
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As function of these nondimensional variables the vibration problem can be written as follows: 
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Boundary conditions: 
On edge ξ = 0 and ξ = 1 (denoted ξ = 0;1):  
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On edge η = 0 and η = 1 (denoted η = 0;1):  
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For finding an RSA of the nondimensional natural frequency Ψmn, we are not interested in the vibration mode 
shapes and we do not need the nondimensional out-of-plane displacement Ω, nor the nondimensional time θ, nor 
the nondimensional coordinates ξ and η. This means that the nondimensional natural frequency Ψmn can be 
expressed as a function of only four nondimensional parameters Ψmn = Ψmn (Δ12, Δ22, Δ66, γ). 
 
Note that rewriting the analytical approximation of Eq. 1 in its nondimensional form leads to a polynomial 
function of the nondimensional parameters: 

 ( ) ( )
2

2 4 2 2 4 4
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Equation 2 is a cubic polynomial in Δ12 , Δ22 , Δ66 and γ2 .  We therefore expressed the squared nondimensional 
frequency as a cubic polynomial response surface (PRS) in terms of these four variables. Such a PRS has 31 
additional polynomial terms beyond those in those in Eq. 2, that can potentially increase the fidelity of the response 
surface approximation. 
 
4. Constructing the RSA 
 
The RSA will be fitted to finite element (FE) simulations of the plate using Abaqus® commercial FE software. We 
used 400 thin plate elements (S8R5) to model the composite plate. 
 
To fit the RSA we need to sample points in the four-dimensional space of the nondimensional parameters. The 
ranges depend on the application, and we selected experiments carried out by Pedersen and Fredriksen [4] for 
comparing the analytical and RS approximations. Had we sampled in the nondimensional variables directly, it 
would have been difficult to deduce values for the dimensional variables needed for the FE model (E1, E2, ν12, G12, 
a, b, h and ρ). Accordingly we chose the following procedure to obtain the points in the nondimensional space and 
their corresponding dimensional parameters: 

i. Sample 5000 points in the eight dimensional-variables space { E1, E2, ν12, G12, a, b, h, ρ } with  uniform 
Latin Hypercube sampling within the bounds considered for the problem. 

ii. Out of the 5000 points extract 200 points in the nondimensional space by maximizing the minimum 
(max-min) distance between any two points. These steps ensure that the points are well distributed (space-filling) 
in the nondimensional space. 
 
Figure 1 illustrates this procedure in a two-dimensional case with Δ12 and γ only. The blue crosses are 
representative of the 5000 points sampled in step i. The red circles are representative of the 200 points selected in 
step two. Because we stopped the max-min search after 100,000 iterations (to keep computational cost reasonable) 
we did not get perfectly distributed points, but this is not required for good accuracy of the RSA. 
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Figure 1: Illustration of the procedure for sampling points in the nondimensional space. 

 
5. Frequency RSA results 
 
The bounds on the variables given in Table 4 were chosen based on the vibration based identification problem 
described in [4]. In our case the RSA would be used to carry out least squares and later Bayesian identification 
approaches for the material properties. The plate is a glass-epoxy composite panel with stacking sequence 
[0,-40,40,90,40,0,90,-40]s. We decided to construct two sets of RSAs with two different bounds. Indeed, based on 
trial and error we found that the RSA for least squares based identification required to have wider bounds than for 
Bayesian identification or the identified values would fall outside of the RSA construction bounds. Narrow bounds 
would also be useful for a refined least squares identification over a small domain around the optimum obtained 
with the larger bounds. Table 4 presents the wide bounds (denoted WB) used for constructing the first RSA, that 
will be used for least squares based identification in Section 6.  
 
Table 4: Wide Bounds on the model input parameters (denoted WB) 
 E1 (GPa) E2 (GPa) ν12 G12 (GPa) a (mm) b (mm) h (mm) ρ (kg/m3) 
Low bound 43 15 0.2 7 188 172 2.2 1800 
High bound 80 28 0.36 13 230 211 3.0 2450 
 
We constructed a cubic polynomial response surface approximations (PRS) for each of the first ten squared 
nondimensional natural frequencies as a function of the nondimensional parameters determined in Section 3. We 
used the procedure described in the previous section but sampling 250 points instead of 200 within the bounds 
WB. The response surface approximations fitted through the 250 points are denoted RSAWB.  
 
To test the accuracy of the RSAs we tested them at an additional 250 finite element points (denoted P250), sampled 
using the same procedure as described in the previous section, using the bounds given in Table 4. The results are 
given in Table 5. The reader can also refer to Table 9 to get an idea of the order of magnitude of the different 
frequencies. 
 
Table 5: Mean and maximum relative absolute error of the nondimensional frequency RSA predictions (denoted 
RSAWB) compared at 250 test points 
Absolute  
Error (%) 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

mean 0.0327 0.5476 0.2897 0.0318 0.0381 0.6802 0.667 0.5834 1.1097 0.5899 
max 0.1745 4.1972 1.6954 0.1399 0.1951 5.2187 5.6103 3.6798 7.8341 7.4978 
 
For comparison purpose we also provide in Table 6 the error of the analytical frequency approximation of Eq. 1 
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compared at these same 250 test points.  
 
Table 6: Mean and maximum relative absolute error of the analytical formula frequency predictions compared at 
250 test points 
Absolute  
Error (%) 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

mean 5.98 8.50 3.47 4.28 7.22 4.68 2.77 5.72 5.75 1.22 
max 6.54 16.28 8.06 9.43 23.32 21.11 18.30 10.28 12.05 10.01 
 
The average error in the analytical approximation over the first ten frequencies was found to be 4.9%. This is 
consistent with previous studies [7] which reported the error of using the analytical formula to be about 5%. On the 
other hand the errors in the RSAs are about an order of magnitude lower.  
 
The second RSA set we construct is for the narrower bounds given in Table 7. These would be typical for a 
Bayesian identification considering typical uncertainty ranges. These bounds could also be used in least squares 
identification for refining the optimum. 
 
Table 7: Narrow bounds on the model input parameters (denoted NB)  
 E1 (GPa) E2 (GPa) ν12 G12 (GPa) a (mm) b (mm) h (mm) ρ (kg/m3) 
Low bound 52 18 0.23 8.3 202 185 2.55 2000 
High bound 70 25 0.32 11 216 200 2.65 2240 
 
Cubic  PRS were again fitted for each of the first ten nondimensional natural frequencies using 200 finite element 
simulations. The RSA fidelity was tested at 250 additional points sampled within the bounds of Table 7. The 
results are presented in Table 8. 
 
Table 8: Mean and maximum relative absolute error of the nondimensional frequency RSA predictions (denoted 
RSANB) compared at 250 test points 
Absolute  
Error (%) 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

mean 0.0043 0.0036 0.0028 0.0045 0.0044 0.0033 0.0029 0.0049 0.0062 0.0046 
max 0.0212 0.0328 0.0301 0.016 0.0197 0.0155 0.0096 0.0171 0.0613 0.0413 
 
For these smaller bounds the RSA fidelity achieved was excellent, the mean of the error among the 250 test points 
being smaller than 0.01% for all the frequencies. The maximum error among the 250 test points was found to be 
only about 0.06% for the 9th frequency.   
 
 
6 Application to vibration based identification 
6.1 Identification scheme 
 
The frequency approximations were constructed to be used with a Bayesian identification procedure of elastic 
constants. The Bayesian procedure allows to account for uncertainties on other input parameters (plate 
dimensions, density) when identifying the material properties. This explains why we wanted the RSA to account 
for variations in these parameters. Nondimensionalization allows in this case to condense the different variables in 
the reduced number of nondimensional parameters. If we were interested only in variations in the elastic constants 
this would have been of more limited interest. 
 
Before looking at the Bayesian problem in a future study, we investigate in the present section the effect of 
approximation fidelity on the more simple problem of least squares identification of the elastic constants. In this 
case we only have four variables (the elastic constants) but it already allows to compare the identifications with the 
low fidelity analytical approximate solution and with the higher fidelity RSA. 
 
The identification procedure seeks the four orthotropic ply elastic constants (E1, E2, ν12, and G12) of a glass/epoxy 
composite based on the first ten natural frequencies of a [0,-40,40,90,40,0,90,-40]s laminate vibrating under free 
boundary conditions. We use the values measured by Pedersen and Frederiksen [4] as experimental frequencies in 
the identification procedure. For convenience these measured frequencies are also given in Table 9 and the plate 
properties and dimensions in Table 10. 
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Table 9 : Experimental frequencies from Pedersen and Frederiksen [4] 
Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Value (Hz) 172.5 250.2 300.6 437.9 443.6 760.3 766.2 797.4 872.6 963.4 
 
Table 10: Plate properties: length (a), width (b), thickness(h) and density (ρ) 
Parameter a (mm) b (mm) h (mm) ρ (kg/m3) 
Value 209 192 2.59 2120 
 
The identification scheme is a basic least squares approach. The identified parameters correspond to the minimum 
of the following objective function: 
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where E = { E1, E2, ν12, G12} , fi
measure is the ith experimental frequency from Table 9 and fi

num is a numerical 
frequency prediction (finite elements here). 
 
6.2 Identification using the response surface approximation 
 
As mentioned earlier the least squares identification will use the RSAs with large bounds (denoted RSAWB, see 
Section 5). The least squares (LS) optimization was carried out without imposing any bounds on the variables 
during the optimization. This led to the optimum shown in Table 13. Note that in [4] Pedersen and Frederiksen 
applied a least squares approach coupled directly to a numerical model (Rayleigh-Ritz) to identify the elastic 
constants. The properties that they found are considered here as reference values and are also provided in Table 13. 
 
Table 13: LS identified properties using the frequency RSAs 
Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa) 
Identified values 60.9 22.7 0.217 9.6 
Reference values [4] 61.3 21.4 0.279 9.8 
 
The residuals between the frequencies at the optimal points and the experimental frequencies are given in Table 
14. They are relatively small and the identified values are also reasonably close to the reference values. This means 
that the accuracy of the RSAWB is good enough to lead to reasonable results. This is not surprising since the RSAs 
have good accuracy allowing the least squares optimization to unfold properly. 
 
Table 14: Residuals for LS identification using the frequency RSAs. J(E) = 1.7807 10-4. 
Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Residual (%) 0.11 -0.60 0.09 0.88 -0.25 0.30 -0.18 0.38 -0.46 -0.30 
 
In the next section we investigate the identification results obtained with the lower fidelity analytical approximate 
solution [3] which has much poorer accuracy. This could lead to more significant differences between the two 
identification methods. 
 
 
6.3 Identification using the analytical approximate solution 
 
Using the analytical approximate solution, the least squares (LS) optimization was carried out first while imposing 
bounds on the variables during the optimization. We imposed on E1, E2, ν12, and G12 the bounds given in Table 7, 
which seem reasonable for the properties that we are seeking. The results of the optimization are given in Tables 16 
and 17. The norm of the residuals (i.e. the value of the objective function) is J(E) = 0.019812. 
 
Table 16: LS identified properties using the analytical approximate solution (bounded variables) 
Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa) 
Identified values 52.0 25.0 0.298 8.3 
Reference values [4] 61.3 21.4 0.279 9.8 
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Table 17: Residuals for LS identification using the analytical approximate solution. J(E) = 0.019812. 
Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Residual (%) -1.27 7.06 -6.84 1.64 -1.37 -2.91 0.72 1.77 6.19 -6.70 
 
We note that several variables hit the bounds. We could keep these results since the bounds we imposed are quite 
wide and from a physical point of view it is quite unlikely that the true parameters lie outside the bounds. We 
wanted however to also know what happens when imposing no bounds at all. 
 
The unbounded optimum found is given in Table 18. The residuals between the frequencies at the optimal points 
and the experimental frequencies are given in Table 19. The norm of the residuals (i.e. the value of the objective 
function) is J(E) = 0.019709. 
 
Table 18: LS identified properties using the analytical approximate solution (unbounded variables) 
Parameter E1(GPa) E2 (GPa) ν12 G12 (GPa) 
Identified values 71.1 46.2 -0.402 -17.1 
Reference values [4] 61.3 21.4 0.279 9.8 
 
Table 19: Residuals for LS identification using the analytical approximate solution. J(E) = 0.019709. 
Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Residual (%) -1.24 6.96 -6.77 1.69 -1.38 -3.00 0.79 1.48 6.25 -6.75 
 
It is obvious from the identified results that the unbounded optimum found is not plausible. Not only are the 
parameters very far away from the reference values but the Poisson’s ratio and shear modulus have negative 
values. While a negative Poisson’s ratio is physically possible, negative shear modulus has no physical meaning. 
 
It is also worth noting that in spite of the implausible optimum the residuals, whether for the bounded or 
unbounded case, are not very large. All are of the order of a few percent, which for recall is also the order of the 
accuracy of the analytical approximate solution compared to finite element analyses (see Table 6). We can also 
note that the residuals and their norm remain practically unchanged for the unbounded optimization compared to 
the bounded one (Table 17). This is a sign of the ill-conditioning of the least squares problem due to a very flat 
objective function around the optimum. It hints that the accuracy of the frequency approximation has a large effect 
on the identified results and while a few percent error might seem very reasonable for some application, it can lead 
to extremely bad results when applied to the present identification problem. 
 
Independently whether the bounded or unbounded optimum, the least squares identification results using the 
analytical approximate solution from [3] are significantly further away from the reference values than the results 
with the high fidelity RSA. This illustrates the importance of high fidelity frequency approximations for the 
present vibration based identification problem. 
 
7. Conclusion 
 
In a first part a procedure was detailed allowing to obtain simple polynomial response surface approximations 
(RSA) for the natural frequencies of a vibrating orthotropic plate. While the procedure and the obtained 
expressions are relatively simple, it can achieve high fidelity, allowing it to be used in most applications that 
require fast function evaluations together with high fidelity such as Monte Carlo simulation for Bayesian 
identification analysis. The RSAs constructed were between one and two orders of magnitudes more accurate than 
previously existing approximate analytical formulas for vibration of free orthotropic plates. To achieve such high 
fidelity the RSAs were fitted to the nondimensional parameters characterising the vibration problem.  
 
Note that the overall procedure is applicable not only to free but any boundary conditions as long as the RSAs are 
refitted to the corresponding design of experiments in terms of the nondimensional parameters characterizing the 
vibration problem with the specific boundary conditions.  
 
In the latter part we showed that the fidelity of the frequency approximation has significant impact on the material 
properties identification problem we consider. The high fidelity nondimensional frequency RSAs led to reasonable 
results. On the other hand low fidelity frequency approximations such as the analytical approximate solution in [3], 
that had an accuracy of about 5%, led to unreasonable or even physically implausible identification results.   
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