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Abstract

Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life health service.

It has long benefited from intensive research into physics modeling and machine learning methods. However, in

practice, the existing solutions often encounter difficulties caused by sparse data & incomplete system failure knowl-

edge. Pure machine learning or physics-based methods can sometimes be infeasible in such situations. As a result,

there has been a growing interest in developing physics-informed machine learning (PIML) models which allow

incorporating different forms of physics knowledge at different positions of the machine learning pipeline. This

combination provides significant assistance for detection, diagnostics, and prognostics. However, to the best of our

knowledge, the bibliometrics analyses and the comprehensive review of the existing research concerning PIML in

PHM remain vacant. Our review is therefore dedicated to filling these gaps. We synthesize the concept of PIML in

PHM, and propose a taxonomy of PIML approaches from the perspective of “Expression forms of informed knowl-

edge” and “Knowledge informed methods”. The findings and discussions presented in this paper enable us to clarify

the current state of the art and the emerging opportunities of PIML approaches, especially for building PHM systems

that can work under the “small data and scarce physics knowledge” paradigm.
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Abbreviations

ANN : Artificial Neural Network

CNN : Convolutional Neural Network

CRA : Cumulative relative accuracy

DNN : Deep Neural Networks

FCN : Fully Convolutional Networks

GNN : Graph Neural Networks

KSVD : K Singular Value Decomposition

LSTM : Long short-term memory

MAE : Mean Square Error

MSE : Mean Absolute Error

NMSE : Normalized Mean Absolute Error

NMAE : Normalized Mean Square Error

NODE : Neural Ordinary Differential Equations

PBM : Physics based methods

PCA : Principal Component Analysis

PDE : Partial differential equation

PHM : Prognostic and Health Management

PIML : Physics-informed Machine Learning

RMSE : Root mean square error

RNN : Recurrent Neural Network

ROM : Reduced Order Model

RUL : Remaining useful life

SVM : Support Vector Machine

VAE : Variational AutoEncoder

DRM : Disk-ram

1. Introductions

Prognostics and Health Management (PHM) is an interdisciplinary engineering discipline. It ensures the real-time

health assessment and future state prediction of systems based on up-to-date information and data processing [1]

by two main paradigms: data-driven and physics model-based methods (PBM).

Enabled by machine learning (ML), with a recent surge related to deep learning [2, 3], data-driven methods extract

features from data and identify the underlying degradation processes, showing promising results at different failure

scales from macro to micro degradation and damages [4]. However, ML in PHM faces three dilemmas:



1. First dilemma arises from the limited data quality. One can cite: a) sparse & noisy observations caused by lim-

ited structural conditions and pervasive monitoring instrument costs [5]; b) sparse & noisy failure information

due to restricted monitoring time and high run-to-failure operation costs [6]; and c) sparse labels caused by

limited expert knowledge and high manual labeling cost [7].

2. Second dilemma is the opaque, unexplained nature of ML, leading to the trust deficit [8]. For high investment

and risk industrial domains, the unobservable process between the ML input data and the output PHM results

is viewed as a “black box” with interpretability difficulties [9].

3. Third dilemma in ML arises from the lack of physics consistency. ML generally converges in the direction

that best fits the training samples which might not absolutely conform to the Physics-constraints [10].

In contrast to ML, PBM observes failure phenomena and then establishes mathematical or numerical mechanism

models to represent faults or degradations [11]. When the failure natures are well understood, PBM needs fewer

data than ML [12] and achieves better generalization [13]. However, modern engineering systems are complex and

influenced by mutual non-linear interactions among the subsystems. Thus, the PBM performance can be affected

by different factors such as the system scale [14] and complexity [15], leading to the following dilemmas:

1. First dilemma concerns the epistemic uncertainties in the model simplification and the paradox between the

computational efficiency and the PBM’s credibility [16].

2. Second dilemma is the sometimes limited understanding of the fault mechanism to construct trustworthy

degradation models [17].

3. Third dilemma arises from the unknown and unobservable parameters of the PBM.

Due to the above dilemmas, the purely physics-based models are rarely applied in practice [18, 19].

Regarding limitations of both data-driven and physics-based methods, it is necessary to develop hybrid approaches

to overcome the drawbacks and inherit the advantage of each one. Fig. 1 shows the motivation for a combination

of PBM and ML models. In fact, physics-informed machine learning (PIML) is a promising solution in the case of

sparse data and incomplete physics knowledge. PIML is formally introduced at the Los Alamos PIML workshops

during 2016-2020 [20] with the initialization in solving complex physics problems by ML. Particularly, Raissi et

al. [21] proposed a physics-informed neural network (PINN)-based Partial differential equations solution, leading

to a boom in “informed NN”. Meanwhile, many industrial partners, including GE[22], IBM [23], Nvidia [24], US

DARPA [25] and NASA [26], the Argonne National Laboratory [27] and Siemens [28], have paid high attention to

the application of PIML. 2blueThe motivation behind the development of PIML has been extensively discussed in

existing literature, highlighting its inherent strengths and advantages as follows:



Figure 1: Sparse data and incomplete physics knowledge drive PHM techniques towards the combination of PBMs and ML.

1. PIML merges data-driven machine learning and physics principles to boost the precision and interpretability

of prognostics and health management (PHM) system predictions.

2. PIML shines in tackling intricate dynamics of complex and nonlinear systems in PHM applications. It achieves

this by integrating physics-based constraints and equations, thereby enhancing its predictive and modeling

abilities.

3. The blend of physics-based knowledge enables PIML to generalize more effectively, offering reliable predic-

tions even beyond observed data. This is particularly useful in scenarios with sparse or incomplete training

data.

4. A key advantage of PIML models is their improved interpretability owing to the explicit incorporation of

physics. By embedding physical constraints and equations, PIML allows to more easily elucidate some of the

underlying mechanisms that drive system behavior, which aids diagnostic analysis and decision-making.

5. Despite limited data, PIML’s efficient use of system physics knowledge allows for accurate predictions, reduc-

ing the dependence on large datasets and potentially minimizing data acquisition costs.

6. PIML is robust to noise and outliers due to its enforcement of physical laws, which can filter out erroneous or

noisy data, leading to dependable predictions.

7. PIML provides computational benefits by amalgamating physics-based constraints with machine learning

algorithms, thereby yielding efficient models that reduce computational complexity, suitable for real-time or

near real-time applications.



Inspired by these advances, there have been several studies on PIML for anomaly detection, fault diagnostics, and

prognostics [29]. 2blue Compared to other potential solutions for sparse data, like transfer learning [30], the advan-

tage of PIML in PHM is in assisting data-driven insights, utilization of expert knowledge, adaptability, and scalability.

By leveraging these strengths, PIML can also enhance the other methods, and the capabilities of addressing the PHM

challenges [31] in limited data availability, complex and nonlinear system dynamics, physics consistency related to

trust, handling of noise and uncertainty, integration of multi-source and heterogeneous data, and transferability

across systems and domains [32]. Furthermore, PIML is not in competition with these methods, but is the icing on

the cake to achieve win-win situations, for example through approaches such as PI-transfer learning in aerospace

anomaly detection [33], and PI-meta learning for machining tool wear prediction [34]. Although many works are

exciting, to the best of our knowledge, none of the existing papers provides a comprehensive review of PIML in

PHM. In addition, no overall qualitative and bibliometrics analyses are conducted. Finally, taxonomy and applica-

tions in PHM are unclear and waiting for discussion in particular with respect to: I) Expression forms of Informed

Knowledge and II) Knowledge Informed Methods. Therefore, this paper aims to fill the above-mentioned gaps.

Besides, the open challenges toward the maturity of PIML in PHM are also highlighted.

The rest of the paper is organized as follows. Section. 2 presents a bibliometric analysis of the existing works

concerning PIML in PHM and thus shows an overview of the research trend on this topic. Section. 3 provides a com-

prehensive and insightful review of PIML methods in PHM. Section. 4 aims to summarize and discuss the source

of physics knowledge, which can be used to derive ML models, as well as the corresponding integration meth-

ods. Finally, Section. 5 summarizes the main contribution of this paper and provides insights into potential future

research.

2. Bibliometrics analysis

This section aims to provide an overview of the research interests of PIML studies in the field of PHM. Firstly, we

describe the literature research methodology in Subsection. 2.1. Then, based on the bibliometric analysis of PIML in

PHM, the research trend on this topic is discussed in Subsection. 2.2. Finally, Subsection. 2.3 compiles a statistical

analysis of the works on PIML applied to PHM.

2.1. Literature research methodology

The bibliographic data investigated in this work covers the period from January 2013 to January 2023. 2blueThe time

span chosen in this article is based on the understanding that PIML technology emerged around 2016. However,

upon investigating the research trend from hybrid frameworks to PIML, we found similar technical concepts dating

back to 2013. Consequently, we conducted a literature search spanning from 2013 to the present. In the search

flowchart presented in Fig. 2, the survey is simultaneously retrieved fromWeb of Science (WoS) and Google Scholar.

The search on Google Scholar is to verify the adequacy of the search in WoS.



Figure 2: Search methodology flowchart.

“Topic search strings” are defined as all terms in (Topic 1) AND (Topic 2). where TOPIC 1: “Physics-informed” OR

“Physics guided” OR “Physics induced” OR “Physics aware” OR “Physics infused” OR “Domain knowledge” OR “Hybrid

framework” OR “Hybrid method”.

AND TOPIC 2:“Machine learning” OR “Deep learning” OR “Data-driven”

In a further filtering, the “Topic filter” consists of “Core vocabulary”, and “Interfering words:”

Core Vocabulary:“Detection” OR “Diagnostic” OR “Prognostics” OR “Failure” OR “Remaining useful life” OR “Predic-

tion” OR “Identification” OR “Classification” OR “SHM” “Damage” OR “Deterioration” OR “Recognition” OR “Fracture”

OR “Crack” OR “Deformation” OR “Abnormal” OR “Equipment” OR “Bearing” OR “Gear” OR “Power”.

Interfering words: Not “Language” OR “Medical” OR “Cancer” OR “Face” OR “Emotion” OR “Text”.

The first search result provides more than 36632 manuscripts from the two largest databases: Google Scholar and

Web of Science. Then, we limited the search to the areas where engineering PIML and PHM solutions are usually

implemented, such as Electronics, Aerospace, Mechanics, Computer Science, Engineering Multidisciplinary, Au-

tomation Control Systems, Energy Fuels, Engineering Civil, Engineering Manufacturing, etc. After this step, 6239

papers are kept. To yield insight into the published material list, we implemented further selection steps like “Thesis

Filter”, “Manual screening”, and “Merge duplication”. In “Thesis Filter”, we perform topic filtering by the Interfer-

ing words and Core Vocabulary mentioned above, and then the results of the filtering are manually reviewed in

“Manual screening” to determine that the article topic fits within the scope of the review. By doing this, we found

that only 139 papers have the topic with the PIML-related hybrid framework in PHM. Among them, 122 papers

discuss PIML in PHM in detail. These papers are exploited to draw critical remarks on the research trends as well

as interesting statistical results on the development of PIML in PHM.

2.2. Research trend analysis of PIML in PHM

2blueTo have an overview of the research trend from the hybrid frameworks to PIMLs, in this section, one can see

that during only a decade of development, research related to the combination of model-driven and data-driven



methods in the industry has appeared in a wide range of conferences and scientific journals, as shown in Fig. 3. One

can see that Mechanical Systems and Signal Processing (MSSP) journal has published a large number of manuscripts

on this hybrid framework with more than 573 papers. IEEE Aerospace is the conference attracting the most related

hybrid framework studies, with 706 papers. Next, to show an overview of the evolving process from the hybrid

(a) Conferences (b) Journals

Figure 3: Publication sources on hybrid frameworks considered in this review.

framework to the PIML methods in PHM, we conducted a bibliometric analysis by using cite space software [35].

Particularly, this software allows automatically analyzing the keyword co-occurrence and then generating the clus-

tering network of the most widely used keywords (Fig. 4) and its development trend over time (Fig. 5).

Figure 4: Keywords co-occurrence clustering.



From the clustering network in Fig. 4, it appears that the most widely used keyword is “physics-informed machine

learning”. Associated with this keyword, one can cite “active learning” and “differential equation” techniques that

are used to build the PIML framework. Besides, “physics-informed neural network” is also a critical keyword that

has co-occurred with “dynamical systems” and “deep neural network”. Looking into the relevant studies, one can see

that PINN is usually used to capture system dynamic behaviors for damage detection, fault diagnostics, and failure

prediction.

Figure 5: Development trend of the keywords in Knowledge-assisted PHM studies.

Considering Fig. 5, one can see that the development trend of the keywords, which are used in PIML research, shifts

from the expert system (in 2011), weighted class association rule mining (in 2014), to PINN in recent years. Mean-

while, one can notice an increasing demand for physics knowledge, which is represented by the often-occurred key-

words such as “physics-informed sparse identification” and “equation-based domain knowledge utilization”. Next,

“deep neural networks” and “extended Kalman filter” (or “particle filter”) are usually combined to create PIML frame-

work ([36]). Besides, research related to “embedding differential equations” of lifetime degradation in ML is also

highlighted through this trend analysis ([37]).

2.3. Statistical analysis of PIML in PHM

2blueThis section aims to discuss the results of the statistical analysis of existing papers relating to PIML in PHM.

2.3.1. Existing terminologies

There are numerous terminologies similar to “physics-informed machine learning” (see Table. 1). According to the

statistical results of all publications relating to PIML in PHM, the distribution of those terms are: “Physics-informed”

(47.1%), “Physics based” (19.9%), “Physics guided” (18.3%), “Physics infused” (8.8%), and “Physics aware (5.9%)”.

Table 1: Summary of the existing terminologies relating PIML in PHM

Terminology References Total number

Physics infused [27], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48] 12



Physics based
[14], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60],

[61], [62], [63], [64], [65], [10], [32], [66], [67], [68], [69], [70], [71]
26

Physics guided
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84],

[85], [86], [87], [88], [89], [90], [91], [92], [93], [94]
23

Physics aware [95], [96], [97], [98], [99], [100], [101], [102] 8

Physics-

informed

[103], [104], [105], [106], [107], [108], [109], [110], [20], [111], [112],

[113], [114], [115], [116], [117], [118], [119], [120], [121], [122], [123],

[124], [125], [126], [127], [128], [129], [130], [81], [123], [131], [132],

[133], [134], [135], [136], [137], [138], [37], [21], [139], [140], [141],

[142], [143], [144], [145], [146], [147], [117], [148], [149], [150], [151],

[152], [153], [154], [155], [156], [157], [158], [109], [159]

64

The heterogeneity of those terms can pose a major obstacle to research on this topic as well as its wide application

in practice. Therefore, in this Subsection, we seek to clarify the similarities and differences between the existing

terminologies.

Figure 6: Different terminologies’ focus.

2blue Fig. 6 presents the main scope of each terminology, and it can be summarized as follows:

1. “Physics infused” aims to discover and incorporate physics property constraints in the data preprocessing

[160, 54], leveraging physics-derived parameters and relations to enhance the performance of ML models,

especially in sparse data scenarios [161].

2. “Physics based” focuses on the integration of physics models or constraints in the model-data hybrid frame-

work [68, 162], incorporating physical principles in feature engineering, system modeling, and constraint-

based approaches [101].



3. “Physics aware” emphasizes perceiving the intrinsic behavior and structural features of the system [95], align-

ing the ML algorithm structure or interaction structure with the physical system to achieve consistency in

physics.

4. “Physics guided” expands the focus of “Physics aware”on visually representing degradation states or using

physics knowledge to guide the data processing [79, 163], the design of ML structures, algorithmic weights

and biases [92], or empirical loss functions [89].

5. “Physics-informed” refers to the broadest framework [164] that covers the entire machine learning process,

incorporating physics knowledge in various aspects along the machine learning pipelines.

Therefore, in this review, the term “PIML” (Physics-informed Machine Learning) is chosen as the discussed termi-

nology to encompass the integration of physics knowledge within machine learning approaches.

2.3.2. Application areas, main motivations, and methods’ evaluation metrics

Fig. 7 presents the distribution of application areas and data sources of the studies on PIML in PHM. From Fig. 7 (a),

one can see that most of the current PIML studies in PHM focus on materials damage (41.2%) because there already

exists in this area numerous studies in mathematical and physical modeling of material dynamic behaviors. These

studies provide a solid foundation for the rapid development of PIML models. Other applications such as aviation

structure and equipment (20.0%), production equipment (13.0%), bearing and gearbox (15.0%), and power grid (9%)

also attract more attention from the research community in recent years. Besides, considering data sources Fig. 7 (b),

we find that most data sources for PIML studies come from simulation (30%). Also, the most used bench-marking

datasets are Turbo engine simulation dataset (C-MAPSS and AGTF30) and battery dataset (Oxford and NASA). The

studies of PIML models for real systems are limited to small experimental platforms (16%). Those observations can

be explained by the lack of exploitable physics-based knowledge of real systems that are usually difficult to model.

(a) Application cases (b) Data sources

Figure 7: Statistical results of main application areas and data sources of PIML in PHM.



Figure 8: Overview on applications of PIML in PHM.

2blueFig. 8 shows the number of publications concerning PIML in PHM per year. It highlights an increasing interest

of the research community in this topic. One can see that the number of publications per year significantly increased

after 2020. The research in materials, bearings, gears, aerospace structures, and power systems has garnered signif-

icant attention.

Fig. 9 presents statistical results of relevant research with respect to data quality. One can see that a large proportion

of PIML research focuses on solving the PHM tasks in the presence of sparse (26%) or noisy data (38%). This remark

highlights the relevance of the PIML over purely data-driven models when it comes to such data quality issues.

Figure 9: Statistical results of relevant research on data quality problem.

Table. 2 lists the metrics used in the literature to train and evaluate the performance of PIML methods. It also shows
the specific PHM tasks to which these metrics correspond, as well as the types of monitoring measurements.

Table 2: Summary of the training, testing metrics and monitoring signals for PIML according to PHM tasks

Ref. Train metric Test metric PHM tasks Signals

[161] MSE MSE Condition monitoring Displacement and voltage



[124], [131] MSE MSE Condition monitoring Vibration

[165] MSE MSE Condition monitoring
Currents, voltages and time

measurements

[106] MAE, MSE, RMSE Precision, recall, F1-score
Condition monitoring &

Fault diagnostic

Vibration, acoustic, image,

temperature

[53], [74],

[151]
MSE MSE

Condition monitoring &

Fault diagnostic
Stress

[126], [166],

[132]
MAE, Cross-entropy loss

Precision, recall, f-k value, ac-

curacy, macro F1, and G-mean

Condition monitoring &

Fault diagnostic
Power, voltages, current

[13] Customized design loss RMSE
Condition monitoring &

Fault diagnostic

Temperature, pressure, vibra-

tion, and air flow

[167], [168] Cross-entropy Relative percentage error
Condition monitoring &

Fault diagnostic
Vibration

[169] MAE Confusion matrix Fault diagnostic Temperature

[170] Maximum cross entropy MAE Fault diagnostic Vibration

[171], [172] Binary cross-entropy Categorical cross-entropy Fault diagnostic Vibration

[173] MAE, similarity distance
Precision, recall, f-measure,

confusion matrix
Fault diagnostic

Temperature, pressure, and

fuel coefficient

[14]
Customized design met-

rics
Test false positive rate, MAE. Fault diagnostic

Vibration, acoustic signal, and

temperature

[6] MAE
Confusion matrix, recall, pre-

cision
Fault diagnostic Vibration

[50] MSE
MSE, Pearson correlation coef-

ficients test
Fault diagnostic Vibration

[112], [146] Cross-entropy loss Confusion matrix Fault diagnostic
Vibration, strain, torque,

acoustic emission

[130] MSE MAE Fault diagnostic
Magnetic flux leakage image,

stress

[117] Customized loss Confusion matrix Fault diagnostic
Far-field loads, stress ratio and

a corrosivity index

[129], [133] MSE MAE Fault diagnostic Stress

[81] MSE, Kernel norm Relative percentage error Fault diagnostic Ultrasonic signal

[27] MSE MSE Fault diagnostic Stress, temperature

[143] Cross-entropy loss MAE Fault diagnostic Vibration

[150] Customized loss Customized metric Fault diagnostic Wave data

[174] Cross-entropy Confusion matrix Fault diagnostic Stress

[175] Softmax loss test Relative percentage error, Fault diagnostic Guided wave signal

[37] MSE
MSE, Pearson correlation coef-

ficients test
Fault diagnostic Acoustic signal

[84]
Cross-entropyMSE, Soft-

max loss
MAE Fault diagnostic Mode shapes signal

[154] Customized loss F1 score Fault diagnostic
Proposed access location, error

locations



[176] MAE Relative percentage rate Fault diagnostic Stress

[70]
Cross-entropy loss func-

tion
MAE

Fault diagnostic & RUL

prediction
Phase field images

[36] MAE α_λdistribution accuracy RUL prediction Vibration

[51] MAE One σ tolerance interval RUL prediction Voltage and current

[54], [155],

[177],

[16],[178]

RMSE RMSE RUL prediction Temperature, pressure, flow

[110],[55] Relative error rate Relative error rate RUL prediction Stress or strain

[179], [113] MSE RMSE RUL prediction Current, voltage, temperature

[180] F_norm RMSE RUL prediction Capacities and voltage

[123] MSE RMSE RUL prediction Vibration

[181] MSE MSE, MAE, R2 RUL prediction Vibration

[182] Similarity distance

Prognostic horizon, αλ dis-

tribution, CRA, convergence,

normalized RMSE

RUL prediction & Degra-

dation prediction
Stress, crack length, pressure

[78], [123] MAE, MSE MAE, RMSE Degradation prediction
Forces, vibrations and acoustic

signal

[183] RMSE MAE Degradation prediction Vibration

[184] MSE RMSE Degradation prediction Stress

[114], [77] MAE
MSE, test point-wise errors,

relative error
Degradation prediction Stress

[76] Binary cross-entropy F1-score Degradation prediction Cutting speed, temperature

[115], [185],

[118]
MSE MAPE Degradation prediction Stress or image

[116] MSE RMSE Degradation prediction
Stress, viscosity, wind speed,

and temperature

[43] NMSE NMAE Degradation prediction Spindle motor current

[186] MSE MSE Degradation prediction Far-field stress

[187] Discretization error MAE Degradation prediction Stress

[188] RMSE RMSE Degradation prediction Rise time, displacement

[93] Negative log likelihood
Sensitivity analysis, MAE, and

absolute error variance
Degradation prediction Stress, temperature

2blueFrom Table 2, we can derive the following remarks:

1. Table 2 summarizes the training and testing metrics used in various PHM tasks for evaluating PIML models.

Metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), Precision, Recall, F1-score, and others

are employed to assess the performance of these models in condition monitoring, fault diagnostics, Remaining

Useful Life (RUL) prediction, and degradation prediction tasks. MSE, MAE, and RMSE are the most commonly

used training metrics in the collected literature, accounting for 35.7%, 20.0%, and 10% respectively.



2. In paper [76], the metric (binary cross-entropy), commonly employed for classification, is used for degrada-

tion prediction. This is because the prediction of degradation states is transformed into a classification of

degradation levels.

3. One important aspect worth discussing is the embedding knowledge related to PIML models. In most studies,

the choice of which type of knowledge to embed tends to be more based on subjective intentions. In practice,

the knowledge embedded is strongly related to the monitoring signals used, e.g., the relationship between

strain signals and deformation and damage growth, the relationship between temperature and fatigue, and

the relationship between vibration and modalities, so collecting knowledge in this area from the available

monitoring signals for use in informed machine learning would be a good place to start.

4. Table 2 also outlines the specific information about the corresponding monitoring signals utilized in each task,

such as displacement, voltage, vibration, temperature, stress, current, and more. The vast majority of studies

(94.3%) focus on processing time-series or one-dimensional monitoring signals, with only 5.7% of studies

involving two-dimensional image signals.

5. The applications of PIML are mainly in the field of structures. The majority of processed signals in these ap-

plications are derived from vibration (25.7%) and stress (27.1%). In addition, certain non-destructive detection

measurement methods, such as guided wave or acoustic emissions, are also utilized. Upon examining Table. 2,

one can see that a wide array of metrics and monitoring signals are employed across various PIML studies.

This diversity reflects the intricate and multidimensional nature of PHM tasks, highlighting the necessity for

tailored approaches that align with specific applications and system characteristics. Gaining an understanding

of the different combinations of physics knowledge, metrics, and signals utilized can serve as a valuable guide

for researchers and practitioners when selecting appropriate evaluation measures and sensor inputs for their

respective PHM applications.

3. Synthetic review of PIML studies in PHM

The physics involved in research subjects in the field of PHM are often diverse and can be expressed in different

forms such as algebraic equations, differential equations, simulation results, logic rules, and probabilistic relations

along with limited monitoring data. Therefore, it is necessary to provide a synthetic review of PIML studies in

PHM from both perspectives: I) Expression forms of Knowledge and II) Knowledge Informed Methods. 2blue

Expression forms of Knowledge in Physics-InformedMachine Learning refer to the following knowledge expression

forms:

1. Mathematical Equations: Knowledge is expressed through the formulation of mathematical equations that

govern the underlying physics of the problem. These equations represent fundamental principles, physical



laws, and constraints relevant to the problem domain.

2. Conservation Laws: Knowledge about conservation principles such as mass, momentum, and energy conser-

vation can be incorporated into physics-informed machine learning models. These laws provide important

constraints that guide the learning process.

3. Differential Equations: Physics problems often involve differential equations that describe the relationships

between variables. Expressing knowledge in the form of differential equations helps to enforce the physical

behavior and relationships in the machine learning models.

4. Constitutive Relations: Knowledge about the material properties, constitutive equations, or parameteriza-

tion specific to the problem domain can be incorporated. These relations provide insights into how different

variables interact and influence each other.

Knowledge Informed Methods are considered as the different embedding ways of the usage of different knowl-

edge expressions, the details are discussed in Subsection 3.2. Analyzing the knowledge expression forms involves

examining how domain knowledge, physical laws, equations, and constraints are integrated into machine learn-

ing algorithms, providing insights into the underlying physics-ML convertibility. Knowledge-informed ways more

specifically seek to leverage domain knowledge in designing and training machine learning models. However, it is

crucial to also consider the broader perspective of analyzing knowledge expression forms, which is often overlooked

in existing reviews. By analyzing both knowledge expression forms and knowledge-informed ways, researchers can

gain a comprehensive understanding of the strengths and limitations of PIML approaches in PHM. This dual perspec-

tive enables a more rigorous assessment of methods and facilitates improvements in the design and implementation

of physics-informed machine learning models.

3.1. Related review papers

To our knowledge, there is no meticulous review of PIML studies in the field of PHM but there are related works on

the PIML topic. These works provide additional information that helps to get an overview of the PIML taxonomy

as well as understand more about the research challenges on this topic.

The existing reviews, shown in Table. 3, argued that PIML is a promising solution to address the ML issues relating

to physics consistency, data scarcity, and model interpretability, which are also valuable to PHM. They share a

similar taxonomic view of PIML, describing that physics knowledge can be incorporated into data pre-processing,

ML algorithm design, and regularization of the loss function.



Table 3: Existing review articles on PIML.

Authors Topics of interest Main Challenges Taxonomy

Rai, Rahul, and
Chandan K.
Sahu.[72]

• Cyber-physical sys-
tem’s dynamic behav-
ior modeling

• Discretization approximation of the con-
tinuous system behavior in a chaotic en-
vironment.

• Scenario-oriented PIML hybrid frame-
work.

• Efficient extraction of causal and model
parameter relationships in big data.

• Physics-based data pre-
processing.

• Physics-guided ML algo-
rithm structure design.

• Physics-based ML regular-
ization item.

Willard, J., Jia,
X.,Xu, S.,
Steinbach, M.[32]

• Engineering and en-
vironmental systems
modeling.

• Model solving meth-
ods.

• Embedding incomplete physics knowl-
edge.

• Keeping physical consistency in data
mining.

• Sparse data and uncertainty quantitative
identification.

• Physics-based regulariza-
tion item in ML algorithm.

• Physics-guided ML initial-
ization.

• Physics-informed ML algo-
rithm architecture design.

Kim, S. W., Kim,
I., Lee, J., Lee,
S.[189]

• Physics-informed deep
learning in dynamical
systems behaviormod-
eling.

• PHM is mentioned

• Designing prior informed deep learning
framework.

• ML training data scarcity.
• Keeping physical consistency.

• Physics-informed Feature
engineering.

• Physics-informed NN
structure.

• Physics-informed loss
function.

Jan Hagendorfer,
Elias.[190]

Condition
monitoring

• ML black-box nature explanation.
• Training data scarcity.
• Keeping physical consistency.

• Parallel/Series physics-ML
combination structure.

• Physics-based regulariza-
tion item in ML objective
function.

Finegan, D. P.,
Zhu, J.,Feng,
et.al.[71]

Battery cell
state prediction.

Keeping physical consistency.

• Physics-based data pre-
processing.

• Physics-guided ML algo-
rithm architecture design.

• Physics-based regulariza-
tion item in ML algorithm.

Jianjing Zhang.,
Robert X.
Gao.[191]

• Data curation and
model interpretation
for smart manufactur-
ing.

• PHM is mentioned.

• Non-interpretable prediction logic in
deep learning.

• Error or imbalance training data.
• Data and data labels scarcity.

• Physical model bias com-
pensation and unknown
parameters estimation via
deep learning.

• Involving Physics-
constraints into deep
learning training .

Xu, Yanwen and
Kohtz,e.t.al.[29]

• Reliability analysis and
risk assessment.

• Uncertainty quantifi-
cation.

• PHM is mentioned.

• Scenario-oriented PIML hybrid frame-
work and its computational efficiency.

• Incompleteness of physics knowledge
and limited representatives of the train-
ing dataset.

• Physics-informed architec-
ture

• Physics-informed loss
function

Thelen Adam,
Zhang Xiaoge
and Fink
Olga.et.al.,[192,
193]

• Physical system mod-
eling

• The need for accurate and reliable data
to create an accurate digital twin model.

• Integrating data from different sources
and formats.

• Selecting the appropriate modeling tech-
nique for a given physical system.

• Scaling up the digital twin model to
larger and more complex systems.

• Validating the digital twin model against
the physical system it represents.

• Modifying the loss func-
tion.

• Generating synthetic data.
• Pre-training on physics-
based data.

• Correctingmodels with un-
modeled physics.

• Correcting models with
prediction residuals.

• Learning to predict inputs.

2blue We greatly acknowledge the valuable perspectives and contributions presented in the existing reviews. How-

ever, it is important to note that these reviews tend to have specific disciplinary focuses, which may limit their



comprehensive coverage of all critical tasks in PHM. Furthermore, while these reviews address the embedding of

physics knowledge into ML approaches, they often lack a holistic analytical perspective throughout the entire ML

process. Although they provide insights into how to incorporate physics knowledge, they do not fully explore

the various sources of knowledge that can be utilized. Moreover, the existing reviews predominantly emphasize

applications related to specific NN architectures, such as PINN, rather than embracing the broader framework of

Physics-Informed Machine Learning (PIML). A recent study in provides a qualitative analysis and a comprehensive

review of the role, taxonomy, and cases of PIML in the field of reliability [29]. PHM is part of the topics in the

application Subsection. Our work complements their findings by providing a comprehensive quantitative analy-

sis from the standpoint of knowledge in PHM, combining the complete qualitative analysis on the most advanced

researches. Additionally, we not only review taxonomic and informed methodology but also examine the various

forms and sources of informative knowledge. Besides, the studies in [192, 193] provide a systematic review of hybrid

modeling in digital twins and briefly discuss the significance of PIML technology. However, these studies primarily

focus on the analysis of modeling system responses and dynamic behaviors in the context of digital twins, and only

partly include the qualitative and quantitative aspects of PIML in the specific context of PHM. Our paper, on the

other hand, is specifically dedicated to PHM delving much deeper into these aspects, while of course not being as

exhaustive in terms of the other aspects of digital twins. Considering the limitations of the existing papers, this

review aims to address the gaps in the state of the art by providing a more thorough and analytical perspective on

PIML methods within the realm of PHM. By integrating both qualitative and quantitative approaches, our research

endeavors to contribute to a holistic comprehension of PHM and its practical applications. Furthermore, it aims to

elucidate a broader understanding of the entire machine learning process, encompassing all critical tasks involved

in the integration of physics-based knowledge.

3.2. Taxonomy of PIML in PHM

Depending on the role of physics knowledge and its informed position in the hybrid model, we propose to classify

PIML methods into three categories. The first category uses physics knowledge to guide the construction of the in-

put space, i.e., “Physics-informed inputspace”. The second category named “Physics-embedded algorithm structure”

2blueincorporates physics knowledge into the model architecture in machine learning process. The third category

embeds Physics-constraints on the ML objective function to conduct “Physics-constrained learning”. These three

categories correspond to three typical solutions to ML problems: input data optimization, model architecture opti-

mization, and objective function optimization. Based on the combined roles of physics knowledge in different parts

of the ML pipeline, we have summarized the 8 types of informed patterns, including “Simulator”, “Gauge”, “Ex-

tractor”, “Operator”, “2blueStructure blueprint”, “Initializer”, “Consistency check”, and “Conflict check”, as shown in

Fig. 10, which covers all aspects of ML data flow. Their corresponding implementations, and the relatedML technical

frameworks for achieving these implementations are also summarized. It can be seen that NN are the most widely



used modeling tool. 2blueTo assist in the understanding of the methodology, the same knowledge with different

informed ways are shown in https://github.com/pimlphm/Physics-informed-machine-learning-based-on-TCN.

Figure 10: Taxonomy of existing PIML methods in PHM

3.2.1. Physics-informed input space

Data preparation generally occupies the most workload in PHM [194]. Regarding the category “Physics-informed

input space”, PIML seeks to gain physics information in the ML input space, distilling the multi-sources and hetero-

geneous monitoring data [45, 46] by assisting data augmentation, feature transformation, feature selection, dimen-

sionality reduction [155], and information fusion [40]. “Physics-informed input space” can be seen as an extension

of the traditional “feature engineering” or “simulation-based data augmentation” processes by using physics knowl-

edge to drive data processing and augmentation, including three paradigms: “Simulator”, “Gauge”, and “Extractor”,

which are shown in Fig. 11.

Figure 11: Three ways to construct a physics-informed input space.

The technologies “Simulator” and “Gauge”, which occur in the “Data preparation” step, aim to generate and trans-
form data. Meanwhile, the “Extractor” in the “Data preprocessing” step is dedicated to extracting useful features. A
brief summary of these three technologies in the existing works is shown in Table. 4.

Table 4: Summary of physics-informed input space studies in PHM.

Ref. Application Knowledge source Informed ML framework PHM tasks



[195,

196]

Aeronautical

structure
Component-based digital twin Simulator Classification tree and SVM Fault diagnostic

[170] Triplex pump Component-based digital twin Simulator
Auto-encoder transfer learn-

ing
Fault diagnostic

[58]
Oil production-

line

Production-based digital twin

model
Simulator Autoencoder & LSTM

Condition moni-

toring

[197] Rotor
A priori evaluation of feature space

separability of loads
Simulator

Hamiltonian autoencoder NN,

PCA, & random forest
Fault diagnostic

[188]

Electro-

Hydrostatic

Actuator degra-

dation

Physical degradation model Simulator LSTM
Degradation pre-

diction

[13] Tubofan engine Engine air path performancemodel Simulator DNN RUL prediction

[55, 53]
Composite struc-

ture

Bonded joints fatigue FE or lattice

surrogate model
Simulator FCN

Fatigue predic-

tion

[198] Bearing
Time domain statistical feature

generation model
Simulator SVM Fault diagnostic

[174]
Aircraft compos-

ite structure

A numerical solutions of Lamb

waves
Simulator CNN Fault diagnostic

[144]
Industrial pro-

duction

Time-series derivative weighting

for perturbation values
Simulator VAE Fault diagnostic

[199] Building
Invariable characteristics of build-

ing structure
Gauge

Physics-informed multi-

source domain adversarial

networks

Fault diagnostic

[59]

Additive man-

ufacturing

monitoring

Geometry invariant in thermal his-

tory features and trend
Gauge Tree-based regression

Condition moni-

toring

[171] Gearbox
Implicit physical association be-

tween unlabeled and labeled data
Gauge

Deep convolutional generative

adversarial network
Fault diagnostic

[200] Gearbox
Vibration inherent cyclostationary

characteristics
Extractor Autoencoder Fault diagnostic

[183] Bandsaw
Vibration modal analysis and finite

element analysis
Extractor PINN and DCNN Fault diagnostic

[167] Gearbox

Health-adaptive physics time-scale

representation embeded input

module

Extractor CNN Fault diagnostic

[201]

Electro-

mechanical

load

Feature space load separability

prior evaluating
Extractor SVM & DNN Fault diagnostic

[169]
Air handling

units

Importance feature selection based

on the semantics of the physical

model

Extractor
isserstein generative adversar-

ial network
Fault diagnostic



Physics-informed simulators

The works in this group focus on the construction of simulators that capture the physical behaviors of the studied

system to generate data for training MLmodels. The data generated by those simulators provides richer information

that covers different health states of the system and reduce the knowledge blindness of ML and thus enhances ML

performance. 2blueTo construct the simulator, various models with different degrees of simulation can be exploited

such as structure-based and process-based digital twin models[192, 193], engine performance models, or compo-

nents’ finite element models. The challenge when implementing a physics-informed simulator is to find a balance

between simulation accuracy and speed. Its basic paradigms is shown in Fig. 12.

Figure 12: Three ways to construct a simulator for physics-informed input space.

Traditionally, to construct a physics-informed simulator, the numerical model’s output is used as the input of the ML

model. However, high-fidelity simulations are computationally costly. Therefore, most research has focused on the

use of a reduced order model (ROM) or a surrogate model to lower the simulation cost. The former are the simpli-

fications of huge scale models for establishing an approximate description of multidimensional physical processes

in low dimensions. The combination of ROM and virtual sensors can create dynamic model calibration [58], which

is actually the basis of many simulation software (e.g., Ansys and Modelica). Digital twin-based physics-informed

input models in the collected literature also augment the input space of ML by simulating certain types of physical

signals based on a ROM of the system’s specific behavior. Besides, surrogate models compute the response of the

original high-fidelity model at a chosen finite number of points. In fact, it is a proxy for the real system at finite oper-

ating states [202]. In existing PIMLmethods, building ROMs usually reduces the amount of unquantified variables in

the model by adding constraints. This increases the preconditions for device operation and specifies the state space

involved, which relies on the user’s understanding of a specific failure. In contrast, surrogate models in existing

PIML studies tend to complete the modeling by fitting a ML model to the relationship between operating conditions

and system response under finite operating conditions. For example, in the simulation of the meshing vibration

behavior of a gear train, the ROM-based PIML simulator specifies the operating conditions of the gear train (load,



speed, etc.). It uses a simplified physical model (e.g. a time-varying stiffness spring-damping model for meshing gear

pairs) to represent the components and a simplified data flow connection to represent the shaft structure. It models

the system mass as a centralized inertia module, ignoring the non-linear coupling, electromechanical coupling, and

changes in dynamic states under different operating conditions. The effect of tooth wear and tooth breakage on

the meshing stiffness are the only factors to be considered. In contrast, the PIML simulator based on the surrogate

model uses a grey box model to fit the relationship among the excitation, responses, and structural parameters. It

assumes that the corresponding mappings of the grey box model are constant and applicable in different working

state spaces, thus further increasing the number of samples.

Physics-informed gauges

In some specific case studies, e.g., complex structural systems, it is inevitable to use simplified physical models for

the construction of “Simulators”. However, this simplification might lead to significant deviations in model behavior

as well as in estimated values compared to the true values of the system [80]. Then, model updates can not inher-

ently correct modeling errors. To overcome this issue, data transferring is an alternative solution for enhancing the

data space. In this light, some studies focus on applying physics knowledge as a “Gauge” to evaluate the similarity

between the source and target database. This technique migrates feature knowledge from the source domain to the

target domain by designing a physically based transfer criterion between them. It allows enhancing the ML robust-

ness and improving the efficiency and accuracy of ML models.

Figure 13: Two ways to construct a gauge for physics similarity metric-informed learning.

The two basic ways to implement “Gauge” are shown in Fig. 13. Its principle consists of finding the invariant

variable or invariant relationship between the source and target domains, such as feature symmetry, conservation,

transformation invariance, and monotonicity [139, 203]. The source domain, which has a large amount of data and

information, is then selectively transferred to the target domain according to physical similarity criteria [159].

Physics-informed extractor

In addition to data augmentation, data processing is another crucial task that directly affects the performance of

ML models. To ensure that the input space contains as many fault-related features as possible, it is necessary to

create a physics-informed extractor to guide the data preprocessing according to physics knowledge. For example,



the proposed physics-informed extractors allow selecting suitable domain transformation methods [204] to get the

relevant aggregated features [155], or fusing heterogeneous information from multiple sources [40, 65]. In [88], the

taut string model equation standardizes the principal component analysis method for extracting the specified modal

frequency bands of cable vibration. The study in [79] develops a physics-guided ML model to conduct the feature

extraction process that can generate particular features directly reflecting the performance of electric vehicles.

2blueFollowing feature extraction, the ML module incorporates an embedding component that functions as a set

of sub-feature extractors. Subsequently, information fusion takes place, with a primary focus on merging physical

health indicators with virtual health indicators. The former pertains to fault physics and typically carries significant

interpretability in terms of the indicators. For the latter, there are two implementations in existing PIML studies[205]:

• Information fusion from multiple physics domains to obtain “sensory data” with less redundancy and rep-

resenting all original information. For example, multiple regression [132], elevated space projection [206],

and other supervised and unsupervised learning methods are used to perform signal-level data fusion and

feature-level data fusion [42].

• Cross-physics domain relations fusion through physics relationships to get “perceptual data”, where the

physics relationships of the various parts of the data are prominent [207, 208], as shown in Fig. 14. For

example, in crack growth prediction, information on the structural response, such as displacement and phase

fields, obtained by the Newton-Raphson solution, are preserved in the form of images of the current state of

the crack to build spatial structural knowledge [70].

Figure 14: PIML based information fusion: Extending and distilling multiple heterogeneous sensory signals into perceptual signal.

3.2.2. Physics-embedded algorithm structure

Regarding “Physics-embedded algorithm structure”, PIML seeks tomake the traditional physics-agnosticML become

physics aware so that the governing processes are added to the design ofML algorithm structures and the parameters



searching process. It is prone to integrate the “Hard Constraint Projections (HCP)” [90] with ML, including the

three following paradigms: “Basic operator”, “ML 2blueStructure blueprint”, and “Parameter initializer”, as shown

in Fig. 15.

Figure 15: Three ways to construct a physics-embedded algorithm structure. 2blueThe different colored lines represent different implementations,
orange arrow represents embedding physical knowledge into a local module of ML such as a neuron, purple arrow is designing inter-module
connections such as layer connections based on physical knowledge, black arrow represents initializing ML parameters

2blue The “Basic Operator” is responsible for enforcing physically resolved relationships in machine learning pro-
cessing. On the other hand, the “ML Structure Blueprint” is dedicated to designing ML modules or inter-layer
connections based on physically derived relationships, thereby endowing sparsity. These components are imple-
mented in the algorithm’s structural design. Additionally, the “Parameter Initializer” focuses on identifying the ML
parameters. A brief summary of these three approaches used in the existing literature is shown in Table 5.

Table 5: Summary of the studies on physics-embedded algorithm structure in PHM.

Ref. Application Knowledge source Informed ML framework PHM tasks

[182]

Crack growth

and filter clog-

ging

Paris laws for fatigue crack and

pressure drop analog formula
Operator ANN RUL prediction

[165] Motor bar broken
Fault frequency and square enve-

lope threshold
Operator CNN Fault diagnostic

[209] Drill pipe
Embedding hydraulic coefficient

relationship between two DNNs
Operator DNN

[113]
Lithium-ion bat-

tery battery

Reduced-order model based on

Nernst and Butler–Volmer equa-

tions

Operator RNN RUL prediction

[43] Tool wear Sipos empirical wear-time Operator
Adaptive neuro-fuzzy infer-

ence system

Degradation pre-

diction

[81, 130] Material defect
Topology of wave-guided electro-

magnetic acoustic sensor systems
Operator Siamese CNN Fault diagnostic

[149] Bearing fatigue Paris-laws based corrosion Operator NN

[114,

129]
Structure crack

Damage differential equations &

Dirichlet boundary based growth

laws

2blueStructure

blueprint
DeepONet

Degradation pre-

diction



[37, 210]
Crack identifica-

tion

Differential equation for crack ex-

tension

2blueStructure

blueprint
Stacked auto-encoder

Degradation pre-

diction

[121,

115, 186,

179]

Aviation struc-

ture crack

Crack extension or vibration

anomaly models

2blueStructure

blueprint
RNN

Degradation pre-

diction

[91, 120,

115]
Structure fatigue

Eulerian integration for fatigue

crack extension

2blueStructure

blueprint
RNN or CNN

Degradation pre-

diction

[113]
Batteries RUL

prediction

Governing differential equations

based onmeasured capacity & volt-

age curves

2blueStructure

blueprint
RNN RUL prediction

[156,

178]

Structure dam-

age
Structural changes due to damages

2blueStructure

blueprint
Stacked NODE Fault diagnostic

[95, 166,

211, 212,

20]

Grid and Buses

FD

Physics spatial or spectrum asso-

ciativity

2blueStructure

blueprint
Graph NN Fault diagnostic

[154] DRAM error Spatial dependence of the DRAM Initializer
SVM, NN, Boosted Trees,

Naive Bayes, Random forest
Fault diagnostic

[168] Bearing
Interpretable weights based enve-

lope spectrum
Initializer

Supervised learning di-

chotomy
Fault diagnostic

[57] Casting defect
One-dimensional heat transfer

equation
Initializer

Non-negative matrix factor-

ization

Condition moni-

toring

[142]
Materials

cracks/fractures

Geomechanical alteration index

cluster basis
Initializer K-Means cluster Fault diagnostic

[76] Tool wear
Decision space parameterized by

cutting speed and temperature
Initializer CNN

Degradation pre-

diction

[149] Power grids
Wind oscillation equations and

grid equations
Initializer Gaussian Process Regression Fault diagnostic

[187]
Offshore wind

turbine
Degradation excess matrix Initializer Bayesian network

Degradation pre-

diction

Physics-informed operator

The principle of the “Operator” is to use physics-knowledge of failure mechanism to build ML modules that allow

better capturing input-output relationships. To do this, there are two ways proposed by the existing studies: 1)

Replacing ML modules with physical input-output models, 2) Custom layer and neuron to express physics equation,

as shown in Fig. 16.



Figure 16: Two ways for embedding physics knowledge in the form of an operator.

2blueThe first approach, replacing ML modules with physical input-output models, performs a physically meaning-

ful transformation of the raw data into health indicators required by the subsequent ML modules. Then through

integrating ML modules for a fusion of information across physics models and ML modules. For example, in the

papers [172, 213], the customized wavelet transformation layers are designed to guide the feature extraction and

health indicator construction tasks by assigning the appropriate coefficients and weights for NN layers. The overall

structure includes both series and parallel fusion methods for the output from the physical embedding part and the

output from theMLmodule processing [116]. The serial architecture selects the best method for each data character-

ization and decision-making step. Compatibility between successive methods is crucial for sequential re-evaluation

of previous outputs, reducing ambiguity and improving accuracy. However, accumulating errors from incomplete

physics information is a potential drawback. The parallel fusion structure combining physics models and machine

learning (ML) modules offer the advantage of leveraging the strengths of both approaches simultaneously. It plays

the role of the compensator in enhancing accuracy, robustness, and interpretability while enabling a comprehen-

sive understanding of complex systems’ degradation behavior [179]. However, challenges include complexity, data

requirements, compromised interpretability, potential conflicts between models and algorithms, and the need for

expertise and resources in development and maintenance.

In the second approach of using ML modules to express physical functions, the ML module acts as a forcing actuator

to derive the physics model output and provide additional physical information. This approach involves utilizing

mathematical approximations through the ML’s intrinsic functions. For instance, in the paper [181], a linear sum-

mation of a NN is employed to represent the relationship between vibration amplitude and rotational speed. The

activation function and connections between NN layers approximate the relation between features and RUL values.

Trainable weights, biases, and nonlinear activation functions represent the unknowns and parameters in the for-

mula.

Physics-informed ML 2blueStructure blueprint



Compared to the “PIML operator”, “PIML 2blueStructure blueprint” is a physics-aware method that focuses more on

guiding the building of data flow similarity between ML and physics knowledge, including modeling the physical

processes, measurement processes, derivation processes, geometric structures, and so on, as shown in Fig. 17.

(a)

Input

Hidden layer 1 Hidden layer 2

Output

(b)

Figure 17: Building PIMLs with similar derivation processes or structures to PBMs.



2blueDue to the fact that the essence of this class of methods lies in designing the structure of machine learning, in-

cluding module design and inter-module connections, we propose to use “Structure blueprint” to represent physical

reasoning processes or physical structural relationships informed machine learning algorithm structure. It aims to

find topological similarities and the unit dependencies mappings from the geometric structure, system behavior, or

internal material interaction [101] to ensure the physical priority of the reasoning process when training ML mod-

els. The conjecture and the abstraction of the system behavior in PBMs are useful sources to optimally guide the

training process of ML. For example, the NN is designed according to the topology and physical laws of an electric

grid in [95]. The underlying physical model governs the operation of the distribution network to sparse the learn-

ing model’s structure where the pruning is done in a deterministic manner during the training process [132]. As a

result, load anomalies and grid damage can be indicated by changes in the output of the network nodes. Besides, in

reference [102], the NN gradient models a potential energy function that is exploited to represent the dependency

of the interference between quad-copters and their distance.

Figure 18: Building PIMLs with similar derivation processes or structures to PBMs.

Several special structures can be utilized to model physically derived relationships. In Fig. 17b, each step of a Runge-

Kutta numerical integration process is represented by a NN layer, and the integration path calculation is completed

based on the physical summation relation. The dynamic behavior changes, such as damage growth in RNN [120],

are expressed through a recursive prediction structure (see Fig. 18). Each formula within the recursive relationship

for damage growth is represented by a custom NN layer, and the inter-layer structure enables the realization of the

recursive relationship. In representing the derivation process in terms of structure, much physics knowledge is fur-

ther de-analyzed [50]. For example, in the paper [37, 156, 178], the specific physical relationships are non-analytical.

The embedding of physics knowledge is accomplished by two NN sharing parameters in a CODEC (Coder-Decoder)

structure. The latter is a proxy for the linear second-order partial differential equation for acoustic wave propagation,

while the former is used to approximate the solution of the model from the measurements to the latter surrogate



NN. In summary, “PIML 2blueStructure blueprint” defines ML reasoning process as part of the physics derivation

form where the ML modules retain their original computational structure, but acts as a mapping of certain types of

the physics equations solving process by constraining the inter-module relationships.

Physics-informed ML parameters initializers

Unlike the focus on both “PIML operator” and “PIML 2blueStructure blueprint”, the research on “PIML parameters

initializers” is more concerned with the selection and assignment of ML parameters and hyper parameters. For ex-

ample, the weight selection is implemented based on physical energy minimum state completion in Markov random

fields (MRF) [154]. In [36], wavelet-based features of the multi-scale envelope spectrum are fused by a statistical

health index generating model, and the observation function between the defect state and the fused features is as-

sumed to be a linear fitting. The empirical model for a spalling propagation based on the Paris formulation is a

predictive model for which the initial parameters are set as probability distributions. Besides, the average value

of the one-dimensional heat transfer equation solution is used as the initial parameter for the factorization of the

non-negative matrix for casting defect monitoring [57]. In summary, the initialization of ML parameters in these

studies is usually based on the physical model solution.

3.2.3. Physics-constrained learning

In contrast to the hard constraints of “Physics-embedded algorithm structure”, PIML also includes soft constraints

that enable ML to produce an approximate satisfaction of a given set of physics through the design of the objective

function. Its approximate satisfaction can be introduced in the form of integration, differentiation, probability, logic

rules, and other forms of physics-based deviations. According to the relationship between the informed physics

objective function and the original ML objective function, this paper groups “Physics-constrained learning” into

two paradigms: “consistency check”, and “conflict test”, which are shown in Fig. 19.

Figure 19: Two ways to construct physics-constrained learning.

The total error of the PIML model includes a traditional ML prediction error (“Error1”) and a physical consistency
error (“Error2”). In general, the numerical best fit to the available data (residual loss) and the consistent satisfaction of
physics principles (boundary loss) show discrepancies [147]. Designing an objective function based on “consistency
check”, or “conflict test” error is dedicated to the convergence of ML results towards physical consistency. The
related literature is summarized in Table. 6



Table 6: Summary of Physics-constraint learning in PHM.

Ref. Application Knowledge source Informed ML framework PHM tasks

[177] Turbo engine Loss based on PDE residuals Consistency Stacked CNN RUL prediction

[96]
Deformation

identification

Normalized physics model’s modal

residual
Consistency DNN Fault diagnostic

[133] Material damage Finite Element Analysis Consistency DNN Fault diagnostic

[123] Bearing Reliability model based on Weibull Consistency ANN Fault diagnostic

[214] Vehicle sensor
Residue generation based on transfer-

able operators
Consistency Neyman-Pearson test Fault diagnostic

[132]
High impedance

fault detection

Elliptic equation of rotational trajecto-

ries of the voltages and currents
Consistency Autoencoder Fault diagnostic

[215] Building Attribute-category matrix Consistency MatConvNet Fault diagnostic

[146]
Ocean current

turbine

Characteristics in frequency domain of

the mean water flow velocity in the fan

balance

Consistency PCA and CNN Fault diagnostic

[150] Metal damage

Atomic update based on the regulariza-

tion term of the one-dimensional wave

equation

Consistency K-SVD Fault diagnostic

[131]
Workshop ma-

chinery

Fault frequency domain feature loss re-

lated Pearson correlation coefficient
Consistency

Deep convolutional

autoencoders
Fault diagnostic

[176]
Damage stress

prediction
FEM based stress distribution Conflict LSTM Fault diagnostic

[143] Bearing
Expert experience-based fault degree

threshold model
Conflict CNN Fault diagnostic

[84]
Steel building

damage
Output of a finite element model Conflict DNN Fault diagnostic

[126,

173]

Wind farm & gas

turbine
Physically complete historical dataset Conflict ANN Fault diagnostic

From Table. 6, one can see that physics knowledge is used directly in the ML target design by modifying the target

function in such a way as to influence the parameter changes during the ML optimization-seeking learning process.

For specific PIML frameworks, the “consistency loss” strives to ensure that the ML output conforms to the physical

fact, while the “conflict loss” is built by the conflicts between the ML output and the physical model output.

Consistency loss design

In tool wear prediction [78], the empirical knowledge (that wear increase as the number of cuts increases) is then

compiled into a function that detects trend information in the output sequence. In the case of ultrasonic detection

of damage to metal sheets, consistency is expressed in the ability of the algorithm to identify results that are close

to the analytical model corresponding to the damage cluster and satisfy the regular term generated by the residual

from the governing equation [37]. In the K-SVD method for metal damage identification, the article [150] builds



an ultra-complete dictionary with an additional one-dimensional wave equation-based regularization term for the

atomic update process of the dictionary.

In these studies, the output of the ML needs to satisfy the regular term or lower the punishment function value of

the governing equation for physical consistency, in addition to the original fitting accuracy as possible. And this

governing equation can be a partial derivative relation that represents an approximation [37]. It can also be whether

certain explicit physical equations are met within the required tolerances. For example, the rotational trajectories

of the voltage and current need to satisfy the elliptic equation in autoencoder-based high impedance fault detection

[132]. In some cases, the design of consistency loss does not require a fully known analytical physics model. It is

equally feasible to enforce the differential equations through a NN as a trial solution to the degradation differential

equations and through additional iterative pathways outside the NN [133].

Conflict loss design

Based on the inconsistency between the physics model and the ML output, it is also possible to design a “conflict

test”, which only optimizes the relevant parameters of the ML in the error propagation process.

In [143], the results of a diagnostic conflict based on an artificial fault threshold model with a deep CNN are used

to design the loss function that aims to improve the discrimination of the severity of bearing faults. A physics-

based loss function is designed to evaluate the difference between the output of a NN model and the output of a

finite element model update in steel building damage detection [84]. This idea can be seen as a traditional fusion

approach, which combines the outputs of different approaches [216] in the ML training process. The main difference

between them is that the physics-based outputs are used here primarily to correct the behavior of ML rather than

enhance decision-making.

4. Discussion of PIML studies in PHM according to the form of physic knowledge

The previous sections summarized the different PIML frameworks in PHM. They initially answer the question of

“how to inform physics knowledge in ML”. However, physics knowledge is an extremely complex abstract concept,

and the question of “what kind of physics knowledge can be used for informing ML” has not been addressed yet.

This question is then considered in Subsection. 4.1. Next, Subsection. 4.2 is intended to synthesize the informed way

of that knowledge in literature.

4.1. Physics knowledge categories

Physics knowledge is the prerequisite for implementing PIML. In review [141], the authors propose categorizing the

knowledge sources according to their origin. However, the PIML implementation methods depend on the form of

knowledge rather than the source of knowledge. For example, the proposed PIML frameworks in papers [84] and

[133] come from different fields (building construction and material industry) with different knowledge sources,

but both of them use the same knowledge form, i.e., finite element methods, to build the “consistency check” loss



function. Therefore, this Subsection focuses on synthesizing the form of physics knowledge instead of its source.

From the existing studies on PIML in PHM, the physics knowledge forms can be classified into three categories,

as shown in Fig. 20. 1) First category: Explicit knowledge related to analytical failure models. The explicit

Figure 20: Physics knowledge forms present in existing studies of PIML in PHM.

knowledge is represented by analytical models or equations of system dynamic behaviors, such as generator inertia

constants, damping coefficients, and rotating speed in rotor dynamics [140]. They are mathematically and physically

unambiguous, formal, symbolic and structured. Particularly, in the field of PHM, they demonstrate the quantifiability

of the failure processes, including algebraic, governing equations, and probabilistic relations.

2) Second category: Embeded knowledge related to a structure or specific process. It is locked into the physics

derivation process, system convention, structure, or layout. It provides information related to the sequence orders

and the requirements of each process step or each component structure. It uses ML modules to express information

concerning the system structure [132], the unit dependencies [154], or the system topology framework. In particular,

some knowledge is non-symbolic and non-explicit, being merely an input-output or mutual verification relationship

between the derivation procedures. 3) Third category: Tacit knowledge relating wide range of physical infor-

mation. It involves hypotheses, expert rules and experiences, and also diverse underlying physical properties. It

refers to knowledge about the deterioration process which is somewhat intuitive and difficult to quantify.

4.2. Discussion of physics-informed ways according to knowledge forms

Table. 7 summarises different forms of knowledge for PIML in PHM and presents their corresponding embedded

way into ML. From this table, we can note that:



Table 7: Summary of the knowledge-informed ways according to the knowledge forms.

Ref.
Knowledge forms

Informed ways
Explicit Embeded Tacit

[195], [196], [170], [58], [197],

[188], [13], [53], [55], [198], [174],

[144]

✓ Simulator

[199], [59], [171], ✓ Gauge

[199], [59], [171], [200], [183],

[167], [201], [169], [169]
✓ Extractor

[182], [36], [62], [172, 213, 63],

[113], [149]
✓ Operator

[118], [43], [165], [51] ✓ Operator

[81], [130], [209] ✓ Operator

[37], [210], [113], [217] ✓
2blueStructure

blueprint

[114], [129], [121], [115], [186],

[179], [50], [120], [91], [114] [156],

[178] [95], [166], [211], [212], [20],

[107]

✓
2blueStructure

blueprint

[57], [142], [76], [149], [187] ✓ Initializer

[154], [168] ✓ Initializer

[96] , [133], [123] [132], [150] ✓ Consistency

[177], [214] ✓ Consistency

[146], [131] ✓ Consistency

[176], [84] ✓ Conflict

[143], [126] , [173] ✓ Conflict

1. Due to explicit analytical equations or models that define clear input-output mathematical relationships, ex-

plicit knowledge is the most common way for building PIML. It is widely used in the construction of “simula-

tors”, “extractors”, “operators”, and “consistency checks”. It can often be used independently or collaboratively

in several data flow sessions in a ML pipeline. It changes the input and output of the corresponding link on

the data stream but does not change the data flow direction.

2. 2blueEmbedded knowledge studies focus on serving as the physics-informed ML structure design guidance.

They seek to build the entire ML structure such that the information flow inferred through the ML model



resembles the one passed through a real physical model, structure, or derivation process. In typical circum-

stances, when there are unknown terms in the process of physical derivation, making it difficult to establish

a formulaic model, and when there exists a quantifiable relationship between physical structures, one may

employ paradigms such as 2blueStructure blueprint (Designing the structure and parameters of ML model

solely based on physical structural relationships or deductive processes), or alternatively, embedding limited

known steps or models as local operators within the ML framework.

3. A large part of “Embedded knowledge” studies actually points to interchangeability between ML and physical

derivations. For example, the Eulerian solution of Ordinary Differential Equations (ODE) is implemented as a

special case of RNNwhich is applied in Dynet [218]. Although the current research still focuses on the relevant

area of neural differential equations (NDEs), i.e. the use of ML to derive or embed the differential equation for

failure as in the paper [217, 156, 178], the trend of operator learning, led by Deeponet, has recently gotten a

lot of attention. For illustration, the transmissible operators, which characterize the relationship between the

outputs of an underlying vehicle sensor system, have been proposed in the paper[217].

4. Although “Tacit knowledge” is the most widespread knowledge, only a small number of studies have been

conducted on it. In these studies, “Tacit knowledge” is usually transformed into a parsable form in order to be

embedded in the objective function and derivation process. It enables the design of a physics similarity test

metric [199, 171] to assess whether the distribution or trend of results conforms to certain physical properties

[177, 214], as well as the construction of a conflict loss [143, 126, 173].

5. For the use of tacit knowledge, the physics knowledge is often not given in advance, but it is obtained by

designing a ML model in a reasonable way to discover the fault-related information. For example, in [118]

the authors use dynamic mode decomposition to extract signal characteristics. These characteristics are used

as labels for training the ML on how to automatically discover the information related to crack growth. The

implementation of this type of knowledge discovery process should lie in stacked ML architectures, i.e., one

ML model for knowledge discovery and one for proofreading or extending knowledge. For illustration, one

can consult the associated two-stage graph NN architecture in [132].

6. In practice, analytical and quantifiable explicit knowledge is certainly restricted, and knowledge regarding

fault processes is still largely perceptual or qualitative. Hence, tacit knowledge can be transformed into em-

bedded knowledge through a deeper understanding of mechanisms and structures. For instance, the node

and connection in the graphical NN can be constructed based on an understanding of the current and voltage

distribution in the electrical grids [149]. Furthermore, the understanding of the basic physics properties and

relations can be described in terms of a formula and translated into explicit knowledge. For illustration, an

embedded transfer learning model based on the physical attributes of buildings’ damage patterns is trained

by minimizing the loss of the damage attribute that is measured via L2-norm and angular loss [215]. Besides,



the aforementioned building-related knowledge can also be used to introduce a new physics guided weighted

design. In [199], the authors use physical similarity to the target to measure the importance of each source

and thus decide the data of which source to transfer.

7. The same physics knowledge can be informed in different ways. For example, dynamic mode decomposition

capturing system characteristics can be used to design operators for image reconstruction to identify cracks

[118], or to design an extractor that generates input feature maps for time-delay-system diagnostic [169].

In particular, knowledge in the form of self-contained input-output relationships and derivations such as fi-

nite elements can be used as 1) embedded knowledge to guide the network design for simulating the physics

derivation such as the dynamic convolution for accelerating CNN [218], 2) explicit knowledge for data aug-

mentation by designing the failure surrogate model [55], or 3) metric to design conflicting loss between ML

and physical predictions [176].

8. 2blueAbout when to use what form of knowledge. According to the analysis of the existing research in Ta-

ble. 7, this paper suggests When dealing with explicit knowledge, the system behaviors can be described by

mathematical equations or analytical models with clear input-output relations. If the physics signal variables

involved in the equations are available, we can use them to customize NN layers or units based on analytical

formulas or system physics characteristics. When explicit knowledge of the system behaviors is unavailable,

butwe have information about systemphysical structures or behaviormodel derivation knowledge, alongwith

handling inference relations for the involved signals, we can construct a physics-informed structure. Embed-

ded knowledge is then utilized to customize the data flow in the NN structure or employ custom-designed

NNs as surrogate models for specific steps in the physics model derivation. In the case of tacit knowledge,

where quantitative information about system behaviors is lacking, but there exist physical relations between

system inputs and outputs or constraints on the system outputs, these relations can be employed to customize

the ML objective function or regulate the output of hidden layers.

It is important to note that these forms of knowledge are not mutually exclusive, and they can often be combined

or integrated within a PIML framework. The choice of which form to use, or whether to combine them, depends on

the specific requirements and objectives of the problem at hand. A comprehensive approach to PIML may involve

utilizing a combination of explicit, embedded, and tacit knowledge to capture the full range of system characteristics

and optimize model performance. Ultimately, the selection of the appropriate form (s) of knowledge requires careful

consideration of the problem domain, available expertise, data availability, and the desired level of interpretability

and accuracy in the modeling process.



5. Challenges and future research directions: Toward PHM in the context of “small data and scarce

physics knowledge”

Although PIML can bring numerous alternative solutions for diverse applications in PHM, as mentioned in previous

sections, the development of PIML in PHM still comes with some particular limitations and challenges. Some of

these limitations and challenges are presented in this section.

5.1. Limitations and challenges of PIML

The challenges related to sparse and noisy data, data availability, and incomplete physic models have been high-

lighted in other reviews [32, 18, 29]. In addition, there is a need for further research into the collection of more

representative data, the selection of an appropriate benchmark model, and the determination of the weighting pa-

rameters or hyperparameters for the informedML part. This paper argues that the fundamental problem underlying

these challenges is how to convert various forms of knowledge into the type necessary for the ML framework, that

is, to adjust knowledge to ML models rather than selecting ML models to fit physics knowledge. Consequently, one

can highlight the challenges in two aspects:

1. Building a physics aware ML framework

In the current research on the design of PIML, the inter-conversion between physics knowledge and ML, as

well as the assessmentmetric forML physical inconsistency, remains an under-explored and challenging topic.

Therefore, there is a need to construct a physics-aware ML framework that can automatically incorporate

physics knowledge into various parts of the ML pipeline based on the form of knowledge according to the

physics-ML inter-conversion mechanism and the inconsistency evaluation results.

2. Construction of knowledge basis

The construction of effective PIML frameworks requires a thorough comprehension of the physical charac-

teristics of the system under investigation. This necessitates that the researcher possesses comprehensive

knowledge and skills in both computer science and physics (e.g. mechanics). Thus, this leads to significant

barriers for junior researchers without interdisciplinary experience in the implementation of PIML techniques.

Furthermore, due to the fact that most knowledge can be ambiguous, mathematical expressions and physics

modeling are not always well-developed for PHM case studies. Consequently, it is essential to construct a

knowledge basis for PIML from ambiguous information.

5.2. Future directions

Although it is difficult to determine which direction will lead to transformative discoveries, the PHM community

can make a substantial contribution to the future of PIML by taking into account the challenges outlined in the

previous section in the following areas:



1. Compiling fault mechanisms in ML

There is a lack of studies regarding how ML can better use integrated physics knowledge from multiple

sources. Establishing the cognitive mechanisms for PIML when different forms of knowledge are embedded

in different ML frameworks thus appears as a meaningful work.

2. From the perspective of metric learning

Another track that appears worth investigation is the development of ML objective functions with more mul-

tidimensional metrics that can cover model complexity, physics consistency, computational cost, and result

accuracy.

3. Further building suitable benchmark problems

A set of well-defined benchmark problems can facilitate the evaluation and comparison of different algorithms

and thus contribute to the development of research on this topic. The physics knowledge corresponding to

public datasets is usually not available because of a deep-domain background requirement. This often leads

to numerous obstacles in developing PIML methods because of the knowledge shortage. The development

of open-source benchmark problems with shared encoded knowledge, such as the synthetic fatigue damage

database presented in [219], or similar developments in other domains would be welcome.

4. Combining flexible twin model to build life cycle tool

2blueThe modeling techniques and twinning enabling technologies in [192, 193] present an appealing oppor-

tunity to integrate with PIML. This combination has the potential to develop a robust life-cycle management

tool that incorporates flexible fidelity models and maintains physics consistency. Additionally, it enables the

inclusion of indeterminate quantitative assessment evaluations by building a twin framework.

5. Adaptation to sparse run-to-failure data and sparse label data

Most of the research on PIML in PHM focuses on sparse observations or information bias in the dataset.

However, unlabeled data and non-complete failure process data account for the vast majority. Therefore,

the theoretical and applied research of PIML for sparse and noisy data is worth exploring. Development of

new PHM paradigms such as physics-informed unsupervised learning, self-supervised learning, and semi-

supervised learning is expected.

6. PIML in “small data and scarce physics knowledge”

One of the ultimate development purposes of PIML in PHM is to be able to work under “small data and scarce

physics knowledge” conditions, which will greatly extend the scope of potential PHM applications. Following

the above-mentioned research directions, combining PIML with knowledge discovery and ML architecture

search techniques has the potential for emerging breakthrough methods.



6. Conclusion

This paper presented bibliometric results and a state-of-the-art review of physics-informed machine learning for

prognostics and health management. An overview of its basic paradigm from the innovative perspective of “How to

inform” and “What to be informed”, is summarized and provided. The existing approaches are grouped according to

where and how the physics knowledge is embedded in the ML pipeline. The challenges of applying PIML to solve

PHM problems and future research directions are also discussed. The main contribution of this paper is to provide

a concise and comprehensive overview of PIML in PHM and to focus on the fundamental challenge of translating

the appropriate form of knowledge for PIML utilization. It is hoped that this paper will encourage further works to

expand the potential of PIML in the field of PHM.
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