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ABSTRACT 
Design analysis and optimization based on high-fidelity 

computer experiments is commonly expensive. Surrogate 
modeling is often the tool of choice for reducing the 
computational burden. However, even after years of intensive 
research, surrogate modeling still involves a struggle to 
achieve maximum accuracy within limited resources. This 
work summarizes advanced and yet simple statistical tools that 
help. We focus on four techniques with increasing popularity 
in the design automation community: (i) screening and 
variable reduction in both the input and the output spaces, (ii) 
simultaneous use of multiple surrogates, (iii) sequential 
sampling and optimization, and (iv) conservative estimators. 

1 INTRODUCTION 
Statistical modeling of computer experiments embraces 

the set of methodologies for generating a surrogate model 
(also known as metamodel or response surface approximation) 
used to replace an expensive simulation code [1]-[6]. The goal 
is constructing an approximation of the response of interest 
based on a limited number of expensive simulations. Although 
it is possible to improve the surrogate accuracy by using more 
simulations, limited computational resources often makes us 
face at least one of the following problems:  

• Desired accuracy of a surrogate requires more simulations 
than we can afford. 

• The output that we want to fit is not a scalar (scalar field) 
but a high-dimensional vector (vector field with several 
thousand components), which can be prohibitive or 
impractical to handle. 

• We use the surrogate for global optimization and we do 
not know how to simultaneously obtain good accuracy 
near all possible optimal solutions. 

• We use the surrogate for optimization, and when we do an 
exact analysis we find that the solution is infeasible. 
This paper discusses sophisticated and yet straightforward 

techniques that address these four issues. We focus on (i) 
screening and variable reduction [7]-[11], (ii) use of multiple 
surrogates [12]-[14], (iii) sequential sampling and 
optimization [15], [16], and (iv) safe estimators under limited 
budget [17]-[19]. 

The remaining of the paper is organized as follows. 
Section 2 reviews the screening and dimension reduction 
techniques. Section 3 presents the use of multiple surrogates. 
Section 4 focuses on sequential sampling techniques. Section 
5 presents the strategies for conservative surrogates. Finally, 
section 6 closes the paper recapitulating salient points and 
concluding remarks. 

2 SCREENING FOR REDUCING THE NUMBER OF 
VARIABLES  

2.1 Variable reduction in input space 
As the number of variables in the surrogate increases, the 

number of simulations required for surrogate construction 
rises exponentially (curse of dimensionality). A question at 
this point is then the following: is it necessary to construct the 
response surface approximation in terms of all the variables? 
Some of the variables may have only a negligible effect on the 
response. Several techniques have thus been proposed for 
evaluating the importance of the variables economically. In 
the next few paragraphs we first provide a brief historical 
overview of methods that have been proposed in this context. 
Then we focus on a few techniques of particular interest in 
more detail.  

A wide category of dimensionality reduction in input 
space is commonly referred to as variables screening. Among 
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the simplest screening techniques are so called one-at-a-time 
(OAT) plans [20], which evaluate in turns the effect of 
changing one variable at a time. It is a very inexpensive 
approach, but it does not estimate interaction effects between 
variables. Variations of OAT screening that account for 
interactions have been proposed by Morris [21] and Cotter 
[22]. 

Another category of screening techniques are variance 
based. A simple, commonly used approach uses a k-level 
factorial or fractional factorial design followed by an analysis 
of variance procedure (ANOVA) [23]. The procedure allows 
identifying the main and interaction effects that account for 
most of the variance in the response. ANOVA can be carried 
out either using a reduced fidelity, computationally 
inexpensive model as has been recommended in [24]-[26], or 
using the high fidelity model as suggested in [27].   Note that 
using a reduced fidelity model is a common technique in 
variable screening, which will be illustrated again in the next 
paragraphs with global sensitivity analysis. 

The iterated fractional factorial design (IFFD) method 
[28],[29] is another screening approach, designed to be 
economical for large number of variables (e.g. several 
thousands). The method assumes that only very few variables 
account for most of the variance in the response and calculates 
the main effects, quadratic effects and cross term effects for 
these significant variables based on a clustered sampling 
technique.   

For additional details and applications on these and 
additional screening methods, such as Bettonvil’s sequential 
bifurcation method [30], the reader can refer to [31]-[33] and 
the references therein. In the remainder of this subsection we 
will develop in more detail just a few techniques that we find 
of particular interest. 

An approach gaining popularity for finding and 
eliminating variables that have negligible effects is Sobol’s 
global sensitivity analysis (GSA) [34]. GSA is a variance-
based approach that provides the total effect (i.e. main effect 
and interaction effects) of each variable, and thus indicates 
which ones could be ignored. The variances are usually 
computed using Monte Carlo simulation based on an initial 
crude surrogate (assumed to be accurate enough for 
screening). GSA was successfully applied to the piston shape 
design [35], the liquid rocket injector shape design [36], the 
bluff body shape optimization [37], and more recently to the 
optimization of an integrated thermal protection system [38], 
the design of high lift airfoil [39], the identification of material 
properties based on full field measurements [40] and stream 
flow modeling [41]. 

A different concept is based on grouping the variables 
into a smaller number by nondimensionalization. The Vaschy-
Buckingham theorem [42]-[44] provides a systematic 
construction procedure of nondimnesional parameters and also 
guarantees that the parameters found are the minimum number 
of parameters (even though not necessarily unique) required 
for an exact representation of the given problem.  

References [45]-[47] show that improved accuracy 
polynomial response surface approximations can be obtained 
by using nondimensional variables. This is mainly because, 
for the same number of numerical simulations, the generally 
much fewer nondimensional variables allow a fit with a higher 
order polynomial. Vignaux and Scott [46] illustrated this 

approach using statistical data from an automobile survey 
while Lacey and Steele [47] applied the method to several 
engineering case studies including a finite element (FE) based 
example. 

Gogu et al. [48] managed to reduce the number of 
variables from eight to four by constructing the surrogate in 
terms of nondimensional variables for a vibration problem of a 
free plate. Venter and Haftka [49] achieved a reduction from 
nine to seven variables by using nondimensional parameters 
for FE analyses, modeling a mechanical problem of a plate 
with an abrupt change in thickness.  

An even greater reduction in the number of variables is 
possible if nondimensionalization is combined with other 
screening techniques. Gogu et al. [50] achieved a reduction 
from fifteen to only two variables using a combination of 
physical reasoning, nondimensionalization and global 
sensitivity analysis for a thermal design problem for an 
integrated thermal protection system. Physical reasoning 
allowed formulating simplifying assumptions that reduced the 
number of variables from fifteen to ten. 
Nondimensionalization was then applied on the equations of 
the simplified problem reducing the number of variables to 
three nondimensional variables. Finally, global sensitivity 
analysis showed that one of the nondimensional variables had 
an insignificant effect thus leaving only two variablesfor the 
surrogate model.  

A final variable reduction approach is important when 
designs of interest are confined into a reduced dimension (e.g. 
a plane in three dimensional space). If the input vectors (of 
dimension n) are all in a lower-dimensional subspace (of 
dimension k, with k<n), then using the initial input space for 
surrogate construction will lead to poor results due to 
numerical ill-conditioning. A reduced dimensional 
representation of the variables should then be used by 
expressing the initially n-dimensional input vectors in a basis 
of the corresponding k-dimensional subspace.  

Principal components regression (PCR) is a technique 
developed to fit an approximation (e.g. polynomial) to the data 
in the appropriate sub-dimensional subspace ([51], Chapter 3). 
Mandel [52] has shown that the technique can be 
advantageous also when the variables-data is not strictly 
confined to a subspace, but the components outside of the 
subspace are relatively small. Rocha et al. [53] have recently 
shown that for the problem of fitting wing weight data of 
subsonic aircraft, PCR provides more accurate results 
compared to other fitting techniques (polynomial 
interpolation, kriging, radial basis function interpolation) due 
to its ability to account for the physical and historical trends 
buried within the input data. 

The partial least squares [54] and sparse partial least 
squares [55] techniques have also been proposed as 
alternatives to principal component regression for reducing 
very high-dimensional data. These techniques have been 
notably used for fitting genomic data.      

2.2 Dimensionality reduction in the output space 
The question of a dimensionality reduction requirement in 

the output space poses itself less often than in the input space 
(that is, usually we want to have the minimal number of 
variables that controls a particular scalar field). For vector-
based response, techniques that take into account correlation 
between components are available [56] and can in some cases 
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be more accurate than considering the components 
independently. For a relatively small dimension of the output 
vector, methods such as co-kriging [57] or vector splines [58] 
are available. However, these are not practical for 
approximating the high dimensional pressure field around the 
wing of an aircraft or approximating heterogeneous 
displacements fields on a complex specimen. These fields are 
usually described by a vector with thousands to hundreds of 
thousands components. Fitting a surrogate for each component 
is then time and resource intensive and might not take 
advantage of the correlation between neighboring points. 

Principal components analysis (PCA), which we already 
touched upon in the previous section addresses this problem. 
PCA is also known as proper orthogonal decomposition 
(POD) or Karhunen-Loeve expansion, and it can be applied to 
achieve drastic dimensionality reduction in the output space 
(reductions from many thousands to less than a dozen 
coefficients are possible). 

POD finds a low dimensional basis from a given set of N 
simulation samples. A field U  within the sampling domain 
bounds is then approximated by 
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where n∈U �  is the vector representation of the field (e.g. 

pressure field, displacement field), { }
1..k k K=

ΦΦΦΦ  the basis 

vectors of the reduced-dimensional, orthogonal basis, and αk 
the coefficients of the field in this basis (i.e. the orthogonal 
projection of the field onto the basis vectors).  

This approach allows approximating the fields in terms of 

K  POD coefficients kα  instead of n  components of the 

vector U . For additional details on the theoretical foundations 
of POD, the reader can refer to [59] and Chapter 1 of [60]. 

Once the reduced dimensional basis determined, one can 

construct surrogate models for each kα  ( 1k K= … ), based 

on the same N  samples that were used for POD 
decomposition. It might seem surprising that, considering that 
n  is equal to several thousands, K  can be low enough to 
easily allow the construction of a surrogate model per POD 
coefficient, but successful applications have proven the 
applicability of the approach to various problems. This is due 
to the fact that variations even in complex fields can be 
controlled by physical phenomena exhibiting effects 
characterized by relatively low dimensionality. 

This approach has been successfully applied to the 
multidisciplinary design optimization of an aircraft wing 
[61],[62]. The stream-flow field around the wing has been 
reduced using POD and surrogate models of the corresponding 
POD coefficients constructed. The method enabled cost-
efficient fluid-structure interaction required for the multi-
disciplinary design optimization. The initial application [61] 
was carried out on a two-dimensional wing model, where the 

variations in vectors of size 70n =  were reduced to only two 

POD coefficients. A subsequent study [62] applied the same 
approach to more realistic 3D wing models where the pressure 
fields around the wing (aerodynamics model) as well as for 
the wing displacement field (structural model) were reduced 
and approximated via this approach. 

Another application of POD reduction combined with 
surrogate modeling concerned Bayesian identification of 
orthotropic elastic constants based on displacement fields on a 
plate with a hole [63]. Variations in displacement fields of 
about 5,000 pixels (i.e. vectors with 5,000 coefficients) were 
reduced to only four POD coefficients, containing enough 
information to perform the identification. Surrogate models of 
these POD coefficients were constructed, enabling a sufficient 
cost reduction for the Bayesian identification to be carried out, 
which requires expensive correlation information. 

Note that PCA is a linear technique, in that the output is 
expressed as a linear combination of the basis vectors. Non-
linear dimensionality reduction approaches have been 
developed for cases where linearity will not provide a 
sufficiently accurate approximation.  Methods based on neural 
networks are relatively popular [64] and some applications 
include feature visualization [65], [66], image processing [67] 
and structural health monitoring [68]. 

3 MULTIPLE SURROGATES 
The simultaneous use of multiple surrogates addresses 

two of the problems mentioned in the introduction: 

• Accurate approximation requires more simulations 
than we can afford by offering an insurance against 
poorly fitted models. 

• Surrogate models for global optimization since 
different surrogates might point to different regions 
of the design space this constitutes at least a cheap 
and direct approach for global optimization. 

3.1 How to Generate Different Surrogates 
Most practitioners in the optimization community are 

familiar at least with the traditional polynomial response 
surface [23], [69], some with more sophisticated models such 
as kriging [70]-[72], neural networks [73]-[75], or support 
vector regression [76]-[78], and few with the use of weighted 
average surrogates [79]-[81]. The diversity of surrogate 
models might be explained by three basic components [82]: 
1. Statistical modeling: for example, response surface 

techniques frequently assume that the data is noisy and 
the obtained model is exact. On the other hand, kriging 
usually assumes that the data is exact and is a realization 
of a Gaussian process. 

2. Basis functions: response surfaces frequently use 
monomials. Support vector regression specifies the basis 
in terms of a kernel (many different functions can be 
used). 

3. Loss function: the minimization of the mean square error 
is the most popular criteria for fitting the surrogate. 
Nevertheless, there are alternative measures such as the 
average absolute error (i.e., the L1 norm). 
It is also possible to create different instances of the same 

surrogate technique. For example, we could create 
polynomials with different choice of monomials, kriging 
models with different correlation functions (see [83] for 
details), and support vector regression models with different 
kernel and loss functions (see [84] for details). Figure 1 
illustrates this idea showing different instances of kriging and 
support vector regression fitted to the same set of points. 
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(a) Kriging surrogates with different 
correlation functions. 

 
(b) Support vector regression models with 
different kernel functions. 

Figure 1: Different surrogates models fitted to five data points of 

the function ( )2(6 2) sin 2 (6 2( ))y x xx = ×− × −  (adapted from [6]). 

3.2 Comparison of Surrogates 
The vast diversity of surrogates has motivated many 

papers comparing the performance among techniques. For 
example, Giunta and Watson [85] compared polynomial 
response surface approximations and kriging on analytical 
example problems of varying dimensions. They concluded 
that quadratic polynomial response surfaces were more 
accurate. However, they hedged that the investigation was not 
intended to serve as an exhaustive comparison between the 
two modeling methods. Jin et al. [86] compared different 
surrogate models based on multiple performance criteria such 
as accuracy, robustness, efficiency, transparency, and 
conceptual simplicity. They concluded that the performance of 
different surrogates has to do with the degree of nonlinearity 
of the actual function and the design of experiment (sampled 
points). Stander et al. [87] compared polynomial response 
surface approximation, kriging, and neural networks. They 
concluded that although neural nets and kriging seem to 
require a larger number of initial points, the three meta-
modeling methods have comparable efficiency when 
attempting to achieve a converged result. Overall, the 
literature leads us to no clear conclusion. Instead, it confirms 
that the surrogate performance depends on both the nature of 
the problem and the sampled points. 

While different metrics can be used to compare surrogates 

(such as the coefficient of determination 2R , the average 

absolute error, the maximum absolute error [86]-[89]) here, 

we will use the root mean square error RMSe . The root mean 

square error RMSe  in a design domain D  of volume V  is 

given by 

 ( ) ( )( )21
ˆ  ,RMS

D

e y x y x d
V

= −∫ x  (2) 

where ( )ŷ x  is the surrogate model of the response ( )y x .  

The integral of Eq. (2) can be estimated using numerical 

integration at test points. So, back to Figure 1, the RMSe  of a 

set of surrogates can greatly differ in terms of accuracy. As a 
result, it might be hard to point the best one for a given 
problem and data set. 

3.3 Surrogate Selection 
If only one predictor is desired, one could apply either 

selection or combination of surrogates [93]. Selection is 
usually based on a performance index that applies to all 
surrogates of the set (that is, a criterion that does not depend 
on the assumptions of any particular surrogate technique). In 
this case, the use of test points is a luxury and we usually have 
to estimate the accuracy of the surrogate based on the sampled 
data only. Because of that, cross validation (estimation of the 
prediction errors based on data points) is becoming popular

*
. 

A cross-validation error is the error at a data point when 
the surrogate is fitted to a subset of the data points not 
including this point. When the surrogate is fitted to all the 

other 1p −  points, the process has to be repeated p  times 

(leave-one-out strategy) to obtain the vector of cross-

validation errors, XVe . Figure 2 illustrates computation of the 

cross-validation errors for a kriging surrogate. When the 
leave-one-out becomes expensive, the -foldk  strategy can 

also be used for computation of the XVe  vector. According to 

the classical -foldk  strategy [92], after dividing the available 

data ( p  points) into /  p k  clusters, each fold is constructed 

using a point randomly selected (without replacement) from 
each of the clusters. Of the k  folds, a single fold is retained as 
the validation data for testing the model, and the remaining 
1k −  folds are used as training data. The cross-validation 

process is then repeated k  times with each of the k  folds 
used exactly once as validation data.  
 

 
Figure 2: Cross-validation error at the second point of the five-

point experimental design 
2XV

e . The kriging model is fitted to 

the remaining four points of the function 

( )2(6 2) sin 2 (6 2( ))y x xx = ×− × − . 

The square root of the PRESS  value (PRESS  stands 

for prediction sum of squares) is the estimator of the RMSe : 

 
1

 .T
RMS XV XVPRESS

p
= e e  (3) 

                                                      
* Nevertheless, cross validation should be used with caution, since the 

literature has reported problems such as bias in error estimation [90], [91]. 
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Since RMSPRESS  is an estimator of the RMSe , one 

possible way of using multiple surrogates is to select the 

model with best (i.e., smallest) RMSPRESS  value [93]-[96]. 

Because the quality of fit depends on the data points, the 
surrogate of choice may vary from one experimental design to 
another. 

Combining surrogates is based on the hope of canceling 
errors in prediction through proper linear combination of 
models. This is shown in Figure 3, in which the weighted 
average surrogate created using the four surrogates of Figure 1 

has smaller RMSe  than any of the basic surrogates. Cross-

validation errors can be used to obtain the weights via 
minimization of the integrated square error [81], [93]. 
Alternatively, the weight computation might also involve the 
use of local estimator of the error in prediction. For example, 
Zerpa et al. [97] presented a weighting scheme that uses the 
prediction variance of the surrogate models (available in 
kriging and response surface for example). 

 

 
Figure 3: Weighted average surrogate based on the models of 
Figure 1. 

Nevertheless, the advantages of combination over 
selection have never been clarified [98]. According to Yang 
[98], selection can be better when the errors in prediction are 
small and combination works better when the errors are large. 
Viana et al. [93] showed that while in theory the surrogate 

with best RMSe  can be beaten (via weighted average 

surrogate), in practice, the quality of information given by the 
cross-validation errors makes it very difficult. On top of that, 
they showed that the potential gains diminish substantially in 
high dimensions. 

3.4 Multiple Surrogates in Optimization 
A surrogate-based optimization cycle consists of choosing 

points in the design space (experimental design), conducting 
simulations at these points and fitting a surrogate (or maybe 
more than one) to the expensive responses. If the fitted 
surrogate satisfies measures of accuracy, we use it to conduct 
optimization. Then we verify the optimum by conducting 
exact simulation. If it appears that further improvements can 
be achieved, we update the surrogate with this new sampled 
points (and maybe zoom in on regions of interest) and conduct 
another optimization cycle. 

In this scenario, it seems advantageous to use multiple 
surrogates. After all, one surrogate may be more accurate in 
one region of design space while another surrogate may be 
more accurate in a different region. The hope is that a set of 
surrogates would allow exploration of different portions of the 
design space by pointing to different candidate solutions of the 
optimization problem. 

Examples of this approach can be found in the literature. 
For instance, Mack et al. [37] employed polynomial response 
surfaces and radial basis neural networks to perform global 
sensitivity analysis and shape optimization of bluff body 
devices to facilitate mixing while minimizing the total 
pressure loss. They showed that due to small islands in the 
design space where mixing is very effective compared to the 
rest of the design space, it is difficult to use a single surrogate 
to capture such local but critical features. Glaz et al. [99] used 
polynomial response surfaces, kriging, radial basis neural 
networks, and weighted average surrogate for helicopter rotor 
blade vibration reduction. Their results indicated that multiple 
surrogates can be used to locate low vibration designs which 
would be overlooked if only a single approximation method 
was employed. Samad et al. [100] used polynomial response 
surface, kriging, radial basis neural network, and weighted 
average surrogate in a compressor blade shape optimization of 
the NASA rotor 37. It was found that the most accurate 
surrogate did not always lead to the best design. This 
demonstrated that using multiple surrogates can improve the 
robustness of the optimization at a minimal computational 
cost. The use of multiple was found to act as an insurance 
policy against poorly fitted models. 

4 SEQUENTIAL SAMPLING AND OPTIMIZATION 
Sequential sampling fits a sequence of surrogates with 

each surrogate defining the points that need to be sampled for 
the next surrogate. This can improve the accuracy for a given 
number of points, because points may be assigned to regions 
where the surrogate shows sign of poor accuracy. 
Alternatively, this approach may focus the sampling on 
regions of high potential for a single or multiple optima.  

4.1 Sequential Sampling 
In the literature [16], [101], [102], the word “sequential” 

is sometimes substituted by “adaptive” or “application-
driven,” and the word “sampling” is sometimes replaced by 
“experimental design,” or “design of experiment”. Usually, we 
will use of the uncertainty model associated with many 
surrogates to select new simulations. The uncertainty structure 
is present in surrogates such as polynomial response surface 
and kriging. Here, we give an example with kriging due to its 
popularity in the literature on computer experiments. 

The basic sequential sampling approach uses finds the 
point in the design space that maximizes the kriging prediction 
error (here, we use the square root of the kriging prediction 
variance). Figure 4 illustrates the first cycle of the algorithm. 
Figure 4-(a) shows the initial kriging model and the 
corresponding prediction error. The maximization of the 
prediction error suggests adding 0.21x =  to the data set. The 
updated kriging model is shown in Figure 4-(b). There is a 

substantial decrease in the root mean square error, from 4.7  

to 1.7 . We can see that regions of high error estimates push 

exploration. 
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(a) Maximizing ( )KRGs x . (b) Updated KRG model. 

Figure 4: Basic sequential sampling. Figure 4-(a) shows that the 

maximization of kriging prediction standard deviation, ( )KRGs x , 

suggests adding 0.21x =  to the data set. Figure 4-(b) illustrates 
the updated kriging (KRG) model after 0.21x =  is added to the 
data set. 

Jin et al. [16] reviewed various sequential sampling 
approaches (maximization of the prediction error, 
minimization of the integrated square error, maximization of 
the minimum distance, and cross validation) and compared 
them with simply filling of the original design (one stage 
approach). They found that the performance of the sequential 
sampling methods depended on the quality of the initial 
surrogate (i.e., there is no guarantee that sequential sampling 
will do better than the one stage approach). Kleijnen and Van 
Beers [101] proposed an algorithm that, after the first model is 
fitted, iterates by placing a set of points using a space filling 
scheme and then choosing the one that maximizes the variance 
of the predicted output (variance of the responses taken from 
cross validation of the original data set). In a follow up, Van 
Beers and Kleijnen [102] improved their approach to account 
for noisy responses. In the works of Kleijnen and Van Beers, 
an improved kriging variance estimate [103] is used and that 
might be a reason for better results. 

Recent developments in sequential sampling are 
exemplified by refs. [104]-[107]. Rai [104] introduced the 
qualitative and quantitative sequential sampling technique. 
The method combines information from multiple sources 
(including computer models and the designer’s qualitative 
intuitions) through a criterion called “confidence function.” 
The capabilities of the approach were demonstrated using 
various examples including the design of a bi-stable micro 
electro mechanical system. Turner et al. [105] proposed a 
heuristic scheme that samples multiple points at a time based 
on non uniform rational B-splines (NURBs). The candidate 
sites are generated by solving a multi-objective optimization 
problem. The effectiveness of the algorithm was demonstrated 
for five trial problems of engineering interest. Gorissen et al. 
[106] brought multiple surrogates to adaptive sampling. The 
objective is to be able to select the best surrogate model by 
adding points iteratively. They tailored a genetic algorithm 
that combines automatic model type selection, automatic 

model parameter optimization, and sequential design 
exploration. They used a set of analytical functions and 
engineering examples to illustrate the methodology. Rennen et 
al. [107] proposed nested designs. The idea is that the low 
accuracy of a model obtained might justify the need of an 
extra set of function evaluations. They proposed an algorithm 
that expands an experimental design aiming maximization of 
space filling and non-collapsing points. 

4.2 Optimization-driven Sequential Sampling 
Surrogate-based optimization has been a standard 

technology for long time [108]. Traditionally, the surrogate 
replaces the expensive simulations in the computation of the 
objective function (and its gradient, if that is the case). Yet, 
Jones et al. [15] added a new twist by using both prediction 
and prediction variance of the kriging model to help selecting 
the next point to be sampled in the optimization task. They 
introduced the efficient global optimization (EGO) algorithm, 
which we will briefly describe here (for complete description 
see [14], [15], and [109]). 

EGO starts by fitting a kriging model for the initial set of 
data points. After that, the algorithm iteratively adds points to 
the data set in an effort to improve upon the present best 

sample PBSy . In each cycle, the next point to be sampled is 

the one that maximizes the expected improvement 

 
( ) ( ) ( ) ( )

( ) ( )ˆ /

,

,PBS

E I s u u u

u y y s

φ   = Φ +   
 = − 

x x

x x
 (4) 

where ( )Φ ⋅  and ( )φ ⋅  are the cumulative density function 

(CDF) and probability density function (PDF) of a normal 

distribution, ( )ŷ x  is the kriging prediction; and ( )s x  is the 

prediction standard deviation (here estimated as the square 

root of the prediction variance ( )2s x ). See [70]-[72] for 

details about the kriging predictior ( )ŷ x  and its prediction 

variance ( )2s x .  

Unlike methods that only look for the optimum predicted 
by the surrogate, EGO will also favor points where surrogate 
predictions have high uncertainty. After adding the new point 
to the existing data set, the kriging model is updated (usually 
without going to the costly optimization of the correlation 
parameters). Figure 5 illustrates the one cycle of the EGO 
algorithm. Figure 5-(a) shows the initial kriging model and the 
corresponding expected improvement. The maximization of 

( )E I  x  adds 0.19x =  to the data set. In the next cycle, 

EGO uses the updated kriging model shown in Figure 5-(b). 
Since the work of Jones et al. [15], EGO-like algorithms 

have attracted much attention from the scientific community 
(e.g., [14], and [109]-[113]). In the follow up of [15], Jones 
[109] provided a detailed study on the ways that surrogate 
models can be used in global optimization (from the simple 
use of the prediction to the elaborated EGO algorithm). 
Forrester and Keane [14] provided an extended and modern 
review, which also includes topics such as constrained and 
multi-objective optimization. Ginsbourger et al. [110], 
Villemonteix et al. [111], and Queipo et al. [112] share the 
common point of proposing alternatives to the expected 
improvement for selection of points. Ginsbourger et al. [110] 



   7 

extended both the expected improvement and the probability 
of improvement as infill sampling criteria allowing for 
multiple points in each additional cycle. However, they also 
mention the high computational costs associated with this 
strategy. Villemonteix et al. [111] introduces a new criterion 
that they called “conditional minimizers entropy” with the 
advantage of being ready to use in noisy applications. Queipo 
et al. [112] focused on the assessment of the probability of 
being below a target value given that multiple points can be 
added in each optimization cycle (this strategy is more cost-
efficient than the expected improvement counterpart). Finally, 
Viana et al. [113] proposed using multiple surrogates that 
optimize the expected improvement (see Eq. (4)) as a way of 
generating multiple points in each additional cycle. 
Preliminary results showed that their approach is a cheap and 
efficient way of generating multiple points per cycle. 

 

  
(a) Maximizing [ ( )]E I x . (b) Updated KRG model. 

Figure 5: Cycle of the Efficient Global Optimization (EGO) 
algorithm. Figure 5-(a) shows that the maximization of the 
expected improvement, [ ( )]E I x , suggests adding 0.19x =  to the 

data set. Figure 5-(b) illustrates the updated kriging (KRG) 
model after 0.19x =  is added to the data set. 

5 BEING SAFE UNDER LIMITED BUDGET 
In constrained optimization (constraints being surrogate 

models) or in reliability-based design optimization (limit state 
composed by surrogate models), it can happen that after 
running the optimization the solution turns out to be infeasible 
due to surrogate errors. This section is devoted to approaches 
that either (i) use conservative constraints so that the 
optimization is pushed to the feasible region; or (ii) make the 
limit state more accurate near the boundary between of the 
feasible domain. 

5.1 Conservative Surrogates 
Usually, surrogate models are fit to be unbiased (i.e., the 

error expectation is zero). However, in certain applications, it 
might be important to safely estimate the response (e.g., in 
structural analysis, the maximum stress must not be 
underestimated in order to avoid failure). One of the most 
widely used methods for conservative estimation is to bias the 
prediction response by additive or multiplicative constants 
(termed safety margin and safety factors, respectively) [114]-
[116]. The choice of the constant is often based on previous 

knowledge of the problem. However, the practice is fairly 
recent for surrogate-based analysis. 

One way of improving the how conservative the surrogate 
(i.e. the conservativeness of a surrogate

†
) is to require it to 

conservatively fit the data points (e.g refs. [117] and [118]). 
Another way is to use the prediction interval given by the 
weighted least square surrogate model as a safeguard against 
surrogate error [119]. However, these approaches do not allow 
tuning in the level of desired conservativeness. In their 
previous work (see refs. [120] and [121]), authors explored 
and compared different approaches to design conservative 
surrogate models. They are summarized in Table 1. Picheny et 
al. [120] found that there was no clear advantage of the one 
specific method over the simple use of safety margin to bias 
the surrogate model. However, the safety margin approach 
lacked a basis for selecting its magnitude. Viana et al. [19] 
proposed a method for design the safety margin based on 
cross-validation errors. 

Table 1: Methods for creating conservative surrogates. Adapted 
from [120]. 

Method Principle 

Biased fitting The surrogate is constrained to be above 
the training points 
 

Constant safety 
factor 

The surrogate response is multiplied by 
a constant 
 

Constant safety 
margin 

A constant is added to the surrogate 
response 
 

Indicator kriging The estimate is a percentile 
 

Error distribution Error distribution is used to build 
confidence intervals 

 
Figure 6 illustrates two of the techniques shown in Table 

1. Consider a conservative prediction, one that overestimates 
the actual response. Figure 6-(a) shows that the original 

kriging model (fit to be conservative 50%  of the time) would 

present a root mean square error of 1.5 . Figure 6-(b) and (c) 

are conservative surrogates designed for 90%  

conservativeness (here, we consider overestimation as being 
conservative). Figure 6-(b) shows that by using safety margin, 
we shift the surrogate up and that would lead to a root mean 

square error of 2.5  (i.e., loss in accuracy of 67% ). Figure 6-

(c) illustrates what happens with the error distribution 
approach. Here, the root mean square error would be 2.9  (i.e., 

loss in accuracy of 97% ). 

 

                                                      
† There are different measures of the conservativeness of a surrogate 

(e.g., the average error or the maximum non-conservative error). For 
convenience, we use the percentage of conservative errors (we consider 
positive errors as being conservative). 



   8 

 
(a) Original kriging model. 

  
(b) Conservative kriging via safety 

margin. 
(c) Conservative kriging via error 

distribution 

Figure 6: Conservative surrogates via safety margin and error 
distribution (consider overestimation as being conservative). 
Figure 6-(a) shows the original kriging model (fit to be 
conservative 50% of the time). Figure 6-(b) and (c) are 
conservative surrogates designed for 90% conservativeness. 
Conservativeness comes with the price of loss in accuracy. 

5.2 Accurate Approximation of the Limit State 
One alternative to the use of conservative surrogates is the 

improvement of the surrogate model near the boundary 
between the feasible and infeasible domains (i.e., improved 
accuracy for target values of the actual function). Recent 
developments on direction employ sequential sampling. Audet 
et al. [122] and Picheny et al. [123] looked at the issue of 
better characterizing the function of interest at around target 
values (of the function). Audet et al. [122] used the expected 
violation (concept similar to the expected improvement) to 
make the surrogate of the constraint function more accurate 
along the boundaries of the feasible/unfeasible region. Picheny 
et al. [123] proposed a modified version of the classical 
integrated mean square error criterion by weighting the 
prediction variance with the expected proximity to the target 
level of response. The method showed substantial reduction of 
error in the target regions, with reasonable loss of global 
accuracy. Bichon et al. [124] discussed how to formally apply 
the ideas behind EGO to the reliability-based optimization 
(RBDO) problem. They present details about the effcient 
global reliability analysis (EGRA) method including the 
expected violation and feasibility functions and how EGRA 
deals with different formulations of the RBDO problem.  

6 CONCLUDING REMARKS AND FUTURE 
RESEARCH 

In this paper, we have summarized four methodologies 
that allow smarter use of the sampled data and surrogate 
modeling. We discussed (i) screening and variable reduction, 
(ii) simultaneous use of multiple surrogates (iii) sequential 
sampling and optimization, and (iv) conservative surrogates. 
Our understanding is that: 

• Screening and variable reduction: is an efficient step for 
reducing the cost of the surrogate’s construction, with 

drastic dimensionality reductions being possible. Some 
approaches such as non-dimensionalization or principal 
component regression can at the same time improve the 
accuracy of the approximations.  

• Multiple surrogates: is attractive because no single 
surrogate works well for all problems and the cost of 
constructing multiple surrogates is often small compared 
to the cost of simulations. 

• Sequential sampling and optimization: is an efficient way 
of making use of limited computational budget. 
Techniques make use of both the prediction and the 
uncertainty estimates of the surrogate models to 
intelligently sample the design space. 

• Safe estimators under limited budget: research has been 
providing tools for design of conservative surrogates. 
Here, there are also benefits in using multiple surrogates. 
Recent developments also embrace sequential sampling 
for constrained and reliability-based design optimization. 
 
We would like to point topics of future research: 

• Screening and variable reduction: (a) automatic 
construction of non-dimensional parameters governing 
the partial differential equations, and (b) generalization of 
principal orthogonal decomposition alleviating the 
sampling needs (and if possible working directly on the 
partial differential equations). 

• Multiple surrogates: (a) resource allocation of simulators 
with tunable fidelity (either in the traditional variable 
fidelity framework or seeing low fidelity samples as 
“noisy” samples), and (b) investigation of the benefits 
multiple surrogates on sequential sampling and reliability-
based optimization, (c) visualization and design space 
exploration (since different surrogates might be more 
accurate in different regions of the design space). 

• Sequential sampling and optimization: (a) development of 
variable fidelity approaches, (b) measurement (and 
reduction) of the influence of the surrogate accuracy on 
the method, and (c) combined use of space-filling and 
adapted strategies for increased robustness. 

• Safe estimators under limited budget: (a) combined use of 
conservative predictions and sequential strategies in order 
to increase accuracy in the regions near the optimum 
(reducing change of overdesign or failure), and (b) design 
for the life cycle, meaning integration of data gathered 
along the design life cycle of the product in the redesign 
(e.g., incorporating the effects of possible future tests in 
redesign). 
 
Finally, complexity and in some cases the lack of 

commercial software may hinder these techniques from 
popularity in the near term. So, we believe that it is very 
beneficial the investments in packages and learning tools 
together with ongoing scientific investigation. 
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