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Abstract. The basic formulation of the least squares method, based on the L2 norm of the 
misfit, is still widely used today for identifying elastic material properties from experimental 
data. An alternative statistical approach is the Bayesian method. We seek here situations with 
significant difference between the material properties found by the two methods. For a simple 
three bar truss example we illustrate three such situations in which the Bayesian approach leads 
to more accurate results: different magnitude of the measurements, different uncertainty in the 
measurements and correlation among measurements. When all three effects add up, the 
Bayesian approach can have a large advantage. We then compared the two methods for 
identification of elastic constants from plate vibration natural frequencies.  

1.  Introduction 
Identifying parameters of a model using experimental data has been extensively studied, including for 
determining elastic material properties from strain or vibration measurements. In order to find the 
parameters that agree best with the experiments, the most widely used method is based on minimizing 
the least squares error between the experimental data and the model predictions. Even if many 
improvements have been brought to the method [1]-[3], the simplest formulation of the least squares 
method, based on minimizing the L2 norm of the misfit [1], is still extensively used today. An 
alternative statistical method for parameter identification is based on Bayes’ rule. The Bayesian 
approach is among the most general statistical frameworks since it can account for prior knowledge 
and also provides the uncertainty in the parameters identified. Isenberg proposed a Bayesian 
framework for parameter estimation in 1979 [4] and others applied this approach to frequency or 
modal identification, i.e. identifying material properties from vibration test data [5][6]. 

While both the least squares and the Bayesian methods have been used numerous times for 
parameter identification, we could not find any publications comparing the two on the same problem. 
The aim of this article is to compare the two, first on a simple example, then on a material property 
identification problem from vibration test data. We seek to identify situations where the Bayesian 
approach leads to significantly different results compared to the basic least squares method.  

First, a three bar truss didactic example will be introduced for comparing the two methods. These 
will then be applied to the identification of elastic properties from natural frequencies of a plate. 
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2.  Material properties identification on a three bar truss example 

2.1.  Description of the three bar truss example 
The first example is a simple material property identification problem on which the application of both 
approaches is straight forward, avoiding complexity which could cloud the comparison. The truss is 
under a horizontal force p and a vertical force r as shown in Figure 1. All three bars are assumed to 
have the same Young modulus E of 10 GPa, which is unknown and which we want to identify from 
strain measurements on two or three of the bars. The cross sectional areas of the bars are known 
exactly: AA is the cross sectional area of bars A and C and AB the cross sectional area of bar B. B

The magnitudes of the forces p and r are uncertain with both normally distributed with a mean 
value of 104 N for p and 105 N for r and a standard deviation of 500 N for both. From static analysis 
we find the following relationships for the strains in the bars. 
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 (3) Figure 1.  Three bar truss problem 

2.2.  The least square method 
The simplest least squares formulation finds the parameters that minimize the sum of the squares of 
the errors between experimental observations and corresponding model predictions. Again note that 
more advanced formulations exist, but here we are interested in this simple yet still widely used 
formulation. For the three-bar truss, assuming we measure the strains in bars A and B, the least 
squares objective function that we seek to minimize can be written as: 

 ( ) ( )2
( ) nominal measure nominal measure

A A B BJ E ε ε ε ε= − + −
2
 (4) 

Note that even though the loads p and r are uncertain we have to provide a single nominal value for 
each. The most natural candidates are the means of the distributions of p and r. Note also that in this 
simple case it was possible to find the minimum analytically, without using numerical strategy. 

2.3.  The Bayesian method 
The Bayesian approach is a statistical approach, giving not only a single value but a probability 

distribution. Compared to other statistical approaches to identification, such as maximum likelihood, 
the Bayesian approach is more general since it can incorporate prior knowledge over the parameters to 
be identified. It is based on the application of Bayes’ rule which gives the probability P(A/B) of an 
event A, knowing the event B occurred as shown in Eq. 5 together with its extension to continuous 
probability distribution functions (PDF). Often P(A) is called the prior probability of A, Pprior(A), to 
mark the distinction to the probability of A knowing B, also called probability of A posterior to B. 
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Applying Eq. 5 to the three bar truss problem we can write the distribution of the Young modulus 
of the bars knowing that we measured   and as shown in Eq. 6. mesure

A Aε ε= mesure
B Bε ε=

 { }( ) { }( )1, ,mesure mesure mesure mesure prior
A A B B A A B B ( )f E f

K
ε ε ε ε ε ε ε ε= = = = = ⋅E f E  (6) 

The right hand side of this equation is composed, apart from the normalization constant K, of two 
quantities. The first is the likelihood function of E given the measurements and the other is the prior 
probability distribution of E. Here we assume that the prior knowledge is in the form of a normal 
distribution with mean value 9.5 GPa and standard deviation 1.5 GPa. This is a wide prior, centred 
relatively far away from the true value of 10 GPa to avoid biasing too much our comparison in favour 
of the Bayesian identification procedure. More details on the impact of the prior will be given in 4.5. 

The other right hand side item in Eq. 6 is the likelihood function of E given the measurements 
 and . It measures the probability of getting the test result for a given true value 

of the modulus, and consequently, it provides an estimate of the likelihood of different modulus values 
given the test results. As we vary E successively from 

mesure
A Aε ε= mesure

B Bε ε=

−∞  to ∞ , we calculate the joint probability 
distribution function of the strains for that E at the measured strain point { , }, 

that is 

mesure
A Aε ε= mesure

B Bε ε=

{ }( ),mesure mesure
A A B Bf Eε ε ε ε= = . For a given E we have a PDF for the strains, due to the 

uncertainty in the loads p and r, which propagate to the strains.  
The likelihood function for a given E is calculated using Monte Carlo simulation to generate 

100,000 loads p and r and propagate them to strains using Eqs. 1-3. The fitted strain PDF is then taken 
at the point { , }. Equation 6 is evaluated in this way for a series of E values. mesure

A Aε ε= mesure
B Bε ε=

3.  Least squares and Bayesian comparison for the three bar truss problem 

3.1.  The comparison method 
The results of both the least squares and Bayesian approaches depend on the actual, but unknown, 

values of the loads p and r in an actual experiment. We compare the two methods in two different 
ways. First we use an extreme case where the actual values of p and r are two standard deviations 
away from their mean values: ptrue=pm+ 2σp and rtrue=rm- 2σm. Second we consider 1000 repetitions of 
the identification processes where the true values of p and r are obtained by Monte Carlo simulations 
from their distributions. This second case provides the average performance of each method.  

For all the cases we compare the modulus obtained from the least squares approach to the most 
likely value from the Bayesian probability distribution. The differences between the two methods are 
likely to be influenced by three factors (i) differences in the magnitude of the measured strains; (ii) 
differences in the uncertainty of the measured strains; and (iii) correlation between measured strains.  

3.2.  Results for different-magnitude strains 
To create a difference between the magnitude of the strain in bar A and the magnitude of the strain 

in bar B we used the numerical values given in Table 1. Note that while the strain in bar A is about 
three times higher than the one in bar B, we use the same relative uncertainty in the loads (2.5%), 
which propagates to about the same relative uncertainty in εA and εB. B

 
Table 1. Numerical values for different-magnitude strains 

 Input parameters Measured strains* 
Parameter AA (m2) AB (m ) B

2 pm (N) rm (N) σp (N) σr (N) εA (mε) εB (mε) B

Value 2.10-4 1.10-2 104 105 250 2500 3.26 0.945 
* obtained from (1) and (3) with E= 10 GPa, p=pmean+ 2σp and r=rmean- 2σm
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Table 2. Extreme case identification results for different-magnitude strain. 

 From  alone mesure
Aε From  alonemesure

Bε Least squares Bayesian 

E (GPa) 9.59 10.52 9.97 (most likely value) 
0.174  (standard deviation)  9.67 

 
The results of the two identification procedures are presented in Table 2. We also provide the 

Young modulus that would be obtained with each of the measurements alone by inverting Eqs. 1 and 3 
respectively. The relatively poor results by the least squares method are because least squares 
implicitly assigns more weight to a strain having high magnitude. Indeed looking at Eq. 4 we have 

 which is about three times bigger than , and so for and . This means that 
for a same variation of E the residue resulting from bar A will be about 3

measure
Aε

measure
Bε

nominal
Aσ nominal

Bσ
2 times bigger than the 

residue from bar B. So the least squares approach implicitly assigns about 9 times more weight to the 
measurement in bar A because it is 3 times higher in magnitude than the one in bar B. It seems logical 
then that the Young modulus identified by least squares is relatively close to the value found using 

 alone. Note that which strain is assigned more weight depends on the derivatives of the strains 
with respect to E, which could change depending on the numerical values of the problem.  

measure
Aε

3.3.  Results for different uncertainty in the strains 
To create different uncertainty in the two strains we used the values given in Table 3. We chose 5% 

uncertainty in p and 0.5% in r. Note that in order to isolate this effect from the previous one, the 
obtained strains have about the same magnitude. The results of the two identification procedures are 
presented in Table 4 for the extreme case. 
 

Table 3. Numerical values for different response uncertainty. 

 Input parameters Measured strains 
Parameter AA (m2) AB (m ) B

2 pm (N) rm (N) σp (N) σr (N) εA (mε) εB (mε) B

Value 7.85 10-4 1 10-2 104 105 500 500 1.05 0.970 
 

Table 4. Extreme case identification results for different response uncertainty. 

 From  alone mesure
Aε From  alonemesure

Bε Least squares Bayesian 

E (GPa) 9.32 10.10 10.08 (most likely value) 
0.058  (standard deviation)  9.69 

 
Again on this extreme case the least squares approach is relatively far away from the true Young 

modulus of 10 GPa while the Bayesian approach is much closer. Since the two strains have about the 
same magnitude, least squares assigns about the same weight to each, so the identified E is at about the 
average between the E found with each measurement alone. However the two strains do not have the 
same uncertainty at all. By propagating the uncertainties on the loads to the strains we realize εA has 
about 7 times higher uncertainty than εB. This information is taken into account by the Bayesian 
method through the likelihood function, which can be seen as assigning more weight to the 
measurement having low uncertainty. This explains why the Bayesian identified modulus is much 
closer to the one found using alone.  

B

measure
Bε

3.4.  Results for correlation among the responses 
To show the effect of correlation we need three strain measurements with two strongly correlated 

but not correlated to the third. For this purpose we used the values in Table 1, simply adding from the 
strain in bar C, εC = -2.79 mε. The correlation between εA and εC is -0.985 while the correlation 
between the other two couples is 0.086, meaning that only εA and εC are highly correlated. 
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Table 6. Extreme case identification results for response correlation. 

 From  mesure
Aε From  mesure

Bε From  mesure
Cε Least squares Bayesian 

E (GPa) 9.59 10.52 9.43 9.96 (most likely value) 
0.196  (standard deviation)  9.58 

 
Comparison between Table 2 and Table 6 shows that the least squares method is more affected by 

adding a correlated measurement (+ 0.9 % error) than the Bayesian approach (+ 0.1% error). The 
explanation is that least square treats all three measurements as independent. Due to the small 
magnitude of  it will be given a small weight, so least squares will mainly combine  
and . The Bayesian approach can be seen as averaging  and   first, then considering 
the average value as a single experiment it combines it with the uncorrelated one.  

mesure
Bε

mesure
Aε

mesure
Cε

mesure
Aε

mesure
Cε

3.5.  Results for all three effects together 
In this last case we analyze what happens when all three effects act together, which is what may 

happen in a real situation. For this purpose we used the numerical values given in Table 7. We have 
different magnitude of the strains, different uncertainty in the loads and correlation among the strains: 
the correlation between εA and εC is -0.999, between εA and εB 0.014 and between εB BB and εC 0.002.  

 
Table 7. Numerical values for all three effects. 

 Input parameters Measured strains 
Parameter AA (m2) AB (m ) B

2 pm (N) rm (N) σp (N) σr (N) εA (mε) εB (mε) B εC (mε) 
Value 2 10-4 1 10-2 104 105 500 500 3.42 0.985 -2.93 

 
Table 8. Extreme case identification results for all three effects simultaneously. 

 From  mesure
Aε From  mesure

Bε From  mesure
Cε Least squares Bayesian 

E (GPa) 9.16 10.10 9.00 10.08 (most likely value) 
0.058  (standard deviation)  9.14 

 
We can see in Table 8 that in this case the difference between the least squares and the Bayesian 

approach is exacerbated. All effects act together and against the least squares method. On the other 
hand the Bayesian method considers almost only εB , which has by far the lowest uncertainty, leading 
the Bayesian method to be much closer to the true Young modulus. 

B

At this point we briefly discuss the influence of the prior distribution on the Bayesian identification 
results. The previous results were obtained for a normally distributed wide prior with mean value 9.5 
GPa and a large standard deviation of 1.5 GPa. If we change the standard deviation of the prior to 0.75 
GPa keeping the same mean we obtain on this extreme case a most likely value of 10.07 GPa (10.08 
previously, see Table 8). If we change the mean of the prior distribution to 10.5 GPa the standard 
deviation remaining the same we obtain a most likely value of 10.09 GPa (compared to 10.08). So 
even though we changed the prior significantly it had very small effects on the Bayesian identification 
results. Of course this could have been different if we had a narrower, more accurate prior distribution 
available, in which case it could have positively affected the results.  

3.6.  Average performance 
To complement the results obtained for the extreme case we repeat the previous procedure 1000 

times, for random values of the loads obtained by Monte Carlo simulation. The quality of the methods 
will be measured mainly by the standard deviation of E as the loads are varied (see Table 9). For the 
different strain magnitude case for example the standard deviation of the Bayesian approach is about 
17% lower than for least squares. This means that, on average, the E found by the Bayesian approach 
is about 17% closer to the true value. In all the cases the Bayesian approach systematically 
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outperforms least squares. The difference becomes even striking for the three effects combined, since, 
on average, the E found by the Bayesian approach will be almost 10 times closer to the true value.  

On a final note, the previously analyzed situations can be handled appropriately by generalized 
least squares formulations as well, even though these might be less straight forward in obtaining the 
uncertainty in the identified parameters. The Bayesian approach is presented here as a natural 
alternative to the more complex least square formulations, which can appropriately handle the 
analyzed shortcomings of the basic least squares method. Also, even though not studied here, a main 
remaining advantage of the Bayesian approach over the generalized least squares formulations is the 
simplicity of taking into account prior information. In our examples we chose a wide prior though to 
concentrate on the comparison between the basic least squares and the statistical Bayesian approach. 

 
Table 9. Average performance of the methods in the different cases. 

  Mean of E (GPa) Standard deviation of E (GPa) 
Least squares 10.01 0.200 Different magnitude Bayesian 9.99 0.167 
Least squares 10.00 0.178 Different uncertainty Bayesian 9.99 0.051 
Least squares 10.01 0.221 Correlation Bayesian 9.99 0.167 
Least squares 10.04 0.447 All three together Bayesian 9.99 0.050 

4.  Vibration identification problem 

4.1.  Description of the problem 
In this section we explore how the two methods compare on a more realistic identification problem of 
elastic properties from the natural frequencies of a plate. Since we are only interested here in 
comparing the two methods, we simulate experiments from analytical expressions and error models. 
This also eases computational cost which would be a major issue if more complex models were used. 

We consider a [0, 90]s simply supported composite laminate of dimensions a = 200 mm, b = 250 
mm and of total thickness h = 3 mm. We assume the true elastic constants of the laminate are Ex = Ey = 
57.6 GPa, Gxy = 4.26 GPa and νxy = 0.05. For simplicity, we identify only two properties, assuming 
that νxy is known as well as Ex = Ey. This leaves Ex and Gxy to be identified. 

The simulated experiment consists of measuring the first nine natural frequencies of the plate. We 
use the thin plate theory for the frequencies in terms of density ρ and rigidities Dij. The assumed 
uncertainties in the thickness h, dimensions, and density are given in Table 9. 
 

Table 9. Assumed uncertainties on the input parameters. 

Parameter  Distribution 
a Normal( 200mm , 0.500mm )  
b Normal( 250mm , 0.500mm ) 
h Normal( 3mm , 10μm ) 

Normal( 1535 kg/m3, 7.67 kg/m3) ρ 

 ( )
4 2 2

11 12 66 222 2
2mn

m m nf D D D D
a a bh

π
ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

4n
b

 (7) 

To simulate an experiment we generate random values for the input properties, and calculate the 
first nine natural frequencies using Eq. 7 to obtain the model response, denoted f resp. However we do 
not measure this value exactly due to measuring noise or modeling error. We assume a uniform 
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measurement noise which gets higher for the higher natural frequencies because the higher vibration 
modes have smaller amplitudes than the lower modes. To this we add a systematic error, which is zero 
for the fundamental frequency and increases linearly. This error may account for the difference 
between thin and thick plate theory, since higher modes have shorter wavelength. The error model is 
then measure resp

mn mn mnf f u= + , where f resp is the model response using Eq. 7 and the simulated values of a, 
b, h and ρ; u is a random variable uniformly distributed in the interval [amn , bmn] where 

 11
max max

2
2

resp
mn lb ub

m na f a a
m n

⎛ ⎞+ −
= +⎜ ⎟+ −⎝ ⎠

         11
max max

2
2

resp
mn lb ub

m nb f b b
m n

⎛ ⎞+ −
= +⎜ ⎟+ −⎝ ⎠

 (8) 

For nine frequencies mmax=nmax=3. We chose alb=-2.5 10-3, aub=-4 10-2, blb=2.5 10-3 and bub=-2 10-2. 

4.2.  The identification methods 
The least squares method minimizes the objective function shown in Eq. 9, where ( , )resp

mn x xyf E G  is the 
response calculated using Eq. 7 using the mean values of a, b, h and ρ. We assume we know the 
average of the systematic error (amn + bmn)/2 for which we correct the experimental frequencies. 

 ( )2

, 1..3
( , ) ( , )resp measure

x xy mn x xy mn
m n

J E G f E G f
=

= −∑  (9) 

The Bayesian approach can be written as shown in Eq. 10. 

{ }( ) { }( )11 11 33 33 11 11 33 33
1, ... ... , (mesure mesure mesure mesure prior , )x xy x xy x xyf E G f f f f f f f f f E G f E G
K

= = = = = ⋅  

(10) 
The main difference with the three bar truss formulation is that we work with the joint probability 

distribution of Ex and Gxy instead of the one dimensional distribution of E. The likelihood is calculated 
with 50,000 simulations with the uncertainties in a, b, h and ρ.  

Unlike for the three bar truss we now also have error which we can take into account in the 
Bayesian approach. We assume that we know there is some numerical noise and that thin plate theory 
overpredicts the natural frequency but we assume we don’t know the exact amount. We use the 
following error model for the Bayesian identification: measure resp

mn mn mnf f u= + % where f resp is the model 

response using Eq. 7 and u  is a random variable uniformly distributed in the interval  where 

and  are obtained using Eq. 8 with a

% ,mn mna b⎡⎣
%% ⎤⎦

mna% mnb% lb=-5 10-3, aub=-5 10-2, blb=5 10-3 and bub=-1 10-2. These 
error bounds are significantly wider than the ones of the actual error model, reflecting the fact that we 
only have vague knowledge of the error model. 

The prior distribution was assumed to be uncorrelated bi-normal with mean 57 GPa and standard 
deviation 10 GPa for Ex and 4.2 GPa and 1.5 GPa respectively for Gxy. This is again a wide distribution 
to avoid that the prior gives the Bayesian method an unfair advantage. 

4.3.  Results comparison 
To illustrate some benefits of the Bayesian method we present first the results for one particular 

simulation where we randomly simulated a single experiment (simulated as explained previously).  
On this case the least squares procedure identified Ex = 57.9 GPa and Gxy = 4.61 GPa. Recall the 

true values are Ex = 57.6 GPa and Gxy = 4.26 GPa . The Bayesian approach obtained the distribution 
shown in Figure 2. The maximum of the distribution is in Ex = 57.9 GPa , Gxy = 4.30 GPa . Both 
approaches found an Ex which is very close to the true value (0.5%). However Gxy found by the least 
squares is 8.2% off the true value while the one found by the Bayesian method is only 0.9% off. 

Furthermore the Bayesian approach provides additional information in form of the standard 
deviation of the distribution. Note that the distribution along Gxy is much wider than the one along Ex 
(note different scales in Figure 2). This means that the confidence in the most likely value of Gxy is 
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much poorer than in the one of Ex. This reflects the well known fact that Gxy is harder to identify 
accurately than Ex from a vibration test.  

 
Figure 2.  Posterior ( Ex , Gxy ) distribution found with the Bayesian approach  

 
The average performance results over 100 repetitions are given in Table 11. The two methods are 

comparable for Ex but the Bayesian approach is about 1.9 times more accurate for Gxy , because the 
least squares objective function is very sensitive to Ex but much less to Gxy. 
 

Table 11. Average performance for the plate vibration problem with 100 repetitions. 

 Mean value (GPa) Standard deviation (GPa) 
Least squares  Ex  = 57.5 ; Gxy = 4.26 For Ex : 0.65  (1.13%) ; for Gxy: 0.15  (3.63%) 
Bayesian  Ex  = 57.5 ; Gxy = 4.26 For Ex : 0.50  (0.88%) ; for Gxy: 0.083  (1.96%) 

5.  Concluding remarks 
We compared for two different problems two approaches to parameter identification: a basic least 
squares approach and a Bayesian approach. Using a three bar truss didactic example we identified the 
following conditions under which the basic least squares method is systematically outperformed by the 
Bayesian method: different magnitude of response components, different uncertainty in the 
measurements and correlation among the measurements. The amplitude of the difference between the 
two approaches depends on the specific problem but on the truss problem we illustrated that it can 
reach a factor of ten when all the effects act combined. 

We then considered the identification of elastic constants from natural frequencies of a plate. Using 
simulated experiments affected by uncertainty in input parameters, measurement noise and model 
error, we compared the two identification approaches. We found that the Bayesian approach presented 
an advantage in particular for identifying parameters to which the response is relatively insensitive.  
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