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Abstract. Full field displacement measurements offer theeptil of identifying
several elastic properties together. However, tmptexity of the approach means that
quantifying the uncertainty in the identified propes is less straight forward. Here,
Bayesian identification is attractive, becauseait ceadily model all the uncertainties in
the analysis and measurements, and in additioroitiges the full coupled probability
distribution of the identified elastic constantisl'is demonstrated here by using full-
field displacement measurements of an orthotrofatepwith an open hole to identify
the elastic constants. One of the barriers to giication of Bayesian identification is
the computational burden associated with very lamgetors of measurements. This is
addressed by the use of proper orthogonal decobposifor reducing the
dimensionality of the measurements and expensiviée fielement simulations. The
identified probability distribution of the four dwtropic elastic constants showed that
these are determined with quite different confidetevels as well as with significant
correlation. Comparison with manufacturing speatiicns showed substantial
difference in one constant, and this conclusioreedwith earlier measurement of that
constant by a traditional four-point bending test.

1 Introduction

For identifying orthotropic elastic constants, noeth based on full field strain or displacement
measurements are gaining popularity [1], since Hilw to capture the fields’ non-uniformity. This
information offers the potential of identifying dbur elastic constants from a single experiment. |
requires though a more complex identification frarmmek compared to traditional point-wise tests on
unidirectional specimen.

Numerous improvements in identification methodsehprovided increasingly accurate estimates
of the material properties involved. However, cltgdzing the uncertainty in the identified
properties is still relatively crude, especially fmmplex experiments. This is important however,
since different material properties obtained fronsiagle test are not identified with the same
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confidence. Typically the highest uncertainty isasated with respect to properties to which the
experiment is the most insensitive. In additior, timcertainty in different properties can be sthpng
correlated, so that obtaining only variance estanatay be misleading.

Thus one of the current challenges in the idemiifon of multiple material properties from a
complex experiment resides in handling differenirses of uncertainty in the experiment and the
modelling of the experiment for estimating the Hsg uncertainty in the identified properties.

A possible approach for doing this is the Bayesmthod [2],[3]. This method was introduced in
the late 1970s in the context of identification §4]d has been applied since to different problems,
notably identification of elastic constants fronatel vibration experiments [5]-[7]. The applications
of the method to these classical point-wise tast®lved only a small number of measurements
(typically ten natural frequencies in the previgusited vibration test), which facilitated the
application of the Bayesian approach.

In the present article we identify the orthotroglastic constants of a composite material from an
open hole tensile test on a laminate, on which wasure th&) andV displacement fields. Several
authors carried out identifications based on sueasurements within a least squares framework
[8],[9]. We propose here to apply the Bayesian tifieation approach. This is of particular interest
with full field measurements, since they providelamge amount of data (one displacement
measurement per pixel of the image) and hence mipeoof smaller uncertainties in the identified
properties. However, the high number of measurésnegpresents also a major computational
challenge in applying the Bayesian approach tofieill measurements.

To address this challenge we propose an approasd wan the proper orthogonal decomposition
(POD) of the full fields in combination with respmsurface methodology (RSM). POD is used in
order to drastically reduce the dimensionality bé tdata to computationally more manageable
levels, while RSM is used to reduce the computaticost of the statistical sampling needed for the
Bayesian implementation.

The rest of the paper is organized as follows. étti&n 2 we give an overview of the
identification problem from an open-hole tensilsttas well as the Moiré interferometry experiment
that was carried out. In Section 3 we apply prap#drogonal decomposition (POD) to the full fields,
while in Section 4 we construct response surfaggaqmations of the POD coefficients. Section 5
provides the Bayesian identification formulatiordaesults. We give concluding remarks in Section
6.

2 Open hole tensile test

2.1 Experiment

In this paper we consider the identification ofhottopic ply-elastic constants from full field
displacement measurements on an open hole plate.plte is a laminate fabricated from a
graphite/epoxy prepreg (TorayT800/3631) with a stacking sequence of [45,-45,@rior
information on the properties that we seek waslabks from the manufacturer and from previous
experiments. The manufacturer’'s specifications given in Table 1 together with the properties
obtained by Noh [18]. Noh obtained the materiapgrties based on a four points bending test at the
University of Florida on a laminate made from thaa same prepreg roll that we used in the full
field open hole test.

Table 1. Manufacturer’s specifications and propsrtiound by Noh [18] based on a four points
bending test.

Parameter HGPa) E(GPa) V12 G12(GPa)
Manufacturer’s specifications 162 7.58 0.34 4.41
Noh’s values [18] 144 7.99 0.34 7.78
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In the present study we seek to identify the plyparties and their uncertainties from a tensile
test on a laminate having the dimensions givengaré 1. The total thicknessis 0.78 mm and the
applied tensile force 700 N. Thd and V displacement fields are defined as being in the 1,
respectively 2 direction. The full field measureriseare taken on a square area 24.3 x 24.3 mm
around center of the hole. The tensile force agpser00 N.
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Figure 1. Specimen geometry. The specimen maté&siajraphite/epoxy and the stacking
sequence [45,-45,0]The tensile force is 700 N.

Moiré interferometry was used in this study to measthe displacement fields. Moiré
interferometry is a technique utilizing the fringatterns obtained by optical interference off a
diffraction grating in order to obtain full fieldigplacement maps. For a detailed description of the
method and some of its applications refer to [1Among the main advantages of Moiré
interferometry are its high signal to noise ratis excellent spatial resolution and its insengiivo
rigid body rotations [11]. The displacement resolut obtained by repeatability tests, can be as low
as 4 nm.

For the measurements we used a diffraction gratiitly 1200 lines/mm, that was transferred
onto the specimen. An ESM Technologies PEMI 1l 202Moiré interferometer using a Pulnix TM-
1040 digital camera were utilized. The traction hmae was an MTI-30K. Rotations of the grips
holding the specimen were allowed by using a l#ted ball bearing for the bottom grip and two
lubricated shafts for the top grip. This allowedréaluce parasitic bending during the tension test.
The experimental setup is shown in Figure 2.

L 'R N
Figure 2. Experimental setup for the open holeitentest.

The phase shifting method was used to extractidpgatement fields from the fringe patterns. A
Matlab automated phase extraction tool developediby[12] was utilized and the displacement
maps extracted from the fringe patterns are pravideFigure 3. Note that no filtering whatsoever
was used during the extraction algorithm. These displacement fields serve as the measurements
for the present identification problem.
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Typical sources of uncertainty affecting the displaent fields are noise, the phase extraction
procedure, imperfect centering of the hole on fhecsnen or misalignment of the grips, which can
create bending.

Figure 3. Displacement fields (in um) obtained frtra fringe patterns in: A) Thg direction.
B) TheV direction.

2.2 Modelling and problem statement

In order to identify the ply-elastic constanks, E,, vi,, Gy, we need a model relating these to the
displacement fields. Unfortunately there are nocexanalytical solutions for the problem of an
orthotropic plate. Instead we chose a finite elémeodel for this purpose.

The plate is modeled using the Abaftinite element software. A total of 8020 S4R elatse
(general purpose, four nodes per element, redutedration) were used. The finite element mesh in
the area of interest is shown in Figure 4 and tle@asurement area highlighted in red. Note that
Figure 4 does not include the entire mesh. Sineewthole plate is modeled in Abaqus there is a
transition using triangular elements towards adamesh at the grip edges of the plate where the
stresses are relatively uniform compared to tha areund the hole.

A finite element mesh convergence study was caoigdand it was found that with the present
mesh the discretization error in the area of irsereas of the order ofxd0* % of the average
absolute value of the field, which was considerezkptable.

T

Figure 4. Finite element mesh. The measurementisiteéghlighted in red.
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During the identification process we vary a certaimber of model parameters such as elastic
constants or plate dimensions and obtain each ttaeorresponding full fields. We seek to match
the predictions with the experimental fields eitlera deterministic way (least squares) or in a
probabilistic way (Bayesian) as we will proposeeher

The field is described here by the displacemenieshbt the 4569 nodes within the reference area
(see highlighted area in Figure 4). Note that tkgeemental fields contain much more information,
since we obtain 490,000 measurement points (pipesjield. The values of the experimental fields
at the node positions are thus calculated by limgarpolation.

If a field calculation needs to be used within Beyesian framework where correlation between
the measurements is required, it is not practaescribe the fields by their value at each pnt
the 4569 nodes here). This is essentially becabsesands-dimensional probability density
functions required to describe the correlation leetvthe different measurement points are outside
the realm of what the statistical methods can atiyehandle with reasonable computational
resources.

Furthermore the model evaluation needs to be regeanillions of times during the
identification, problem exacerbated by the needstatistical sampling. Using a finite element model
directly is not computationally feasible in thissea

The computational challenge can then be statedobeswk. First, can we find a reduced
dimensional representation of the full fields fonatever combination of input parameters (elastic
constants, plate dimensions in our case) withirerdam domain? Second, can we reduce the cost
required for the model evaluation?

To address these problems we propose to use tipermpoothogonal decomposition method for
dimensionality reduction and response surface naetlogy for cost reduction. These are described
in the following two sections.

3 Proper orthogonal decomposition

3.1 Theoretical foundations

Let us considet)' € R", which is the vector representation of a fieldj(elisplacement field).
Note thatn is usually several thousands. We seek, based sample vectorsy'}i-; n, a reduced
dimensional representation of the fields’ variaiovith some input parameters.

The aim of the proper orthogonal decomposition (P@i2thod is to construct an optimal,
reduced dimensional basis for the representatiagheofample vectors (also called snapshots). In the
POD approach the snapshots need to have zero m#ais,is not the case the mean value needs to
be subtracted.

We denote{CDk the vectors of the orthogonal basis of the redudedensional

}kzl..K
representation of the snapshots. The POD methdd sedind the basis vector®, that minimize
the representation error:

R 2
mingz u' — Zai,kq)k Q)
=1 k=1 12
Because{ ®, }kzl..K is an orthogonal basis, the coefficients are given by the orthogonal

projection of the snapshots onto the basis vecthssa result we have the following reduced

~1
dimensional representatidn of the vectors of the snapshot set:
K

Gi:iai7k¢ =S (U o), 2)
k=1

k=1
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The reduction in dimension is frolhto K. The truncation orddf needs to be selected such as to

maintain a reasonably small error in the represl;iselmismuZ of U'. Selecting such & is always
problem specific and an error criterion is giverttier down.

The main advantage of the POD method is that ivides a simple procedure for constructing
the basis from the sampleb'} -1 n. The procedure guarantees that for a given triowcatrder we
cannot find any other basis that better approximtte snapshots subspace.

The basis{ d)k} IS constructed using the following matrix:

k=1..K

v Uy
X=|: " 3)

U}L UrflV

The vectors{CDk are then obtained by the singular values decoriposof X, or

}k:u{
equivalently by calculating the eigenvectors of thatrix XX'. The singular values decomposition
allows writing that:

X = oxAT (4)
where @ is the matrix of the column vectom, . Thesvd()function in Matlab was used here for

the singular value decomposition.
A truncation error criteriom is then defined by the sum of the error normshasve in Equation

5.

N| K 2 N

)3 EEDHTLY DS T Q

i=1 k=1 12 i=1 L2
K N

o 2 2 . . .
wheree =1 — Zaj Zaj ,ando; are the diagonal terms of the diagonal marikor a

j=1 j=1

derivation of this criterion and further details BOD the reader can refer to [13].

3.2 POD decomposition of the full fields

For the open hole plate identification problem we mterested in accounting for variations of the
following parameters: ply elastic constalig E,, vi,, G;, and ply thickness. We are looking at
variations of the homogenized ply-properties andktiess here and not at spatial variations within
the plate. Accounting for variations in the elastonstants is needed as usual for the identificatio
procedure. We added here the ply thickness toti#ltes a typical source of uncertainty that the
Bayesian identification can account for. We assuime@ that we are interested in variations of the
parameterg;, E,, vi5, G1, andt within the bounds given in Table 2.

Table 2. Bounds on the input parameters of inté€fest graphite/epoxy composite material).

Parameter E, (GPa) E,(GPa) V12 G, (GPa) t (mm)
Lower bound 126 7 0.189 3.5 0.12
Upper bound 234 13 0.351 6.5 0.18

We obtained the snapshots required for the PODoagprby sampling 200 points within the
bounds of Table 2. The points are obtained by Liayercube sampling, which consists in obtaining
the 200 sample points by dividing the range of gaatameter into 200 sections of equal marginal
probability 1/200 and sampling once from each seactiatin hypercube sampling typically ensures
that the points are reasonably well distributetheentire space.
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At each of the 200 sampled points we perform atdirgdlement analysis, which gives the
corresponding horizontal and vertical displacenfeitls U andV respectively. Each of the 200
fields of U (and 200 o) represents a snapshot and is stored as a coleator\that will be used for
the POD decomposition. The simulated measuremet @ee highlighted area in Figure 4) covers
4569 finite element nodes so we obtain snapshat®rgeof size 4569 x 1. The snapshots maxrix
has then a size of 4569 x 200. Note that as mesdiamthe POD theory section, the snapshots need
to have zero mean. In our case this was true ®Utheld but not for theV field, so we needed to
subtract the mean value of each snapshot as sholaguation 6, where the bar notation denotes the
mean value of the field.

VAR VAR VARV
X=| & : (6)
(A ARRIARS

The POD modes of the 200 fields are then calculag®dg the singular value decomposition as
shown in Equation 4. Note that there are two paéwmtays to do the POD decomposition: drand
V independently or obd andV together (i.e. a single vector of size 9138 X\¥ith U andV together
we have for a given truncation order half as mamgrdes of freedom as wit and V
independently. While for a given truncation ordee error usind) andV together is smaller, we
found that it is more difficult in this case to @bruct response surface approximations (RSA) of the
POD coefficients due to higher errors in the RSMc8 for the identification we will need to
construct RSA we chose to do the POD decompositidd andV independently.

An illustration of the fields obtained for a patiar snapshot (snapshot 1) is shown in Figure 5,
which provides an idea of the spatial variationd ander of magnitude of the fields. These fields
were obtained with the following parametefs=202.2 GPaE,=10.84 GPay,,=0.2142,G,,=4.989
GPa,t=0.1312 mm.

W (mirm)

a0

100 -

180+

200 -

2801

-0.m -0.005 0 0.005 0o

Figure 5:U andV displacement fields for snapshot 1.

In total we obtained 200 POD modes. The first fang represented graphically in Figures 6 and
7. We note that the first modes are relatively el@sut not identical even though the differences
cannot be seen by naked eye) to the typicahdV displacement fields (see Figure 5). Furthermore
we see that the modes have a more complicated shtdpacreasing mode number, as expected for
a modal decomposition basis. For additional detilsthe POD decomposition of the open hole
tensile test full fields the reader can refer t4][1
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Figure 6: First 4 POD modes for thefield.

i=2

W (mmy)

2801 ., i . . . 1

] 50 100 150 200 280

-0.04 -003-002-001 0 001 002003 004




14th International Conference on Experimental Medsa

i=3 i=4

W (mirm)

80

100

180

200

280

Figure 7: First 4 POD modes for tiidield.

Once the POD modes determined we need to find anoppate truncation ordeK for the
reduced dimensional approximations of the fiela= (Equation 2). Table 3 provides the truncation
error criterion defined in Equation 5.

Table 3. Error norm truncation criterioni¢ defined in Equation 5).

K 2 3 4 5
¢ for U fields 2.43910" 4.70%10° 7.28610" 1.21x10"
¢ for V fields 1.05410° 2.90610° 4.13610%° 3.51&%10"

The error norm truncation criteriar) while being a global error criterion, is relaliwédnard to
interpret physically. Furthermore the criteriorbessed only on the convergence of the snapshots that
served for the POD basis construction. However astntases we will want to decompose a field
that is not among the snapshots, so we also waatdw the convergence of the truncation error in
such cases.

Accordingly we chose to construct a different emagasure based on cross validation. The basic
idea of cross validation is the following: if weveN snapshots, instead of using them all for the
POD basis construction we can use oNhL snapshots and compute the error between thalactu
fields of the snapshot that was left out and its¢ated POD decomposition. By successively
changing the snapshot that is left out we can diiainN errors. The root mean square of thiise
errors, which we denote by GVs, is then a global error criterion that can be usedssess the
truncation inaccuracy.

In order to use the cross validation technique wednto define how to measure the error
between two strain fields (the actual strain figtdl its truncated POD decomposition). We chose the
maximum absolute difference between two fieldssThaximum error is computed at each oflthe
(N=200 here) cross validation steps and the root nseguare leads to the global error criterion
CVrums. Table 4 provides these values for different tation orders. The relative Qs error with
respect to the value of the field where the maxinauror occurs is also given in Table 4.

Table 4. Cross validation Gys truncation error criterion.
K 2 3 4 5
U field CVgrus (Mm) 9.3510° 1.0510° 1.6510" 7.8%10°
CVrus (%) 9.9610% 1.1%107? 2.3%10° 9.4%10*
V field CVgrus (Mm) 1.010° 6.3x10" 3.0%10" 7.3%10°
CVrus (%) 1.1&10* 4.7%10% 3.7k10° 1.8410°
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At this point we make the following remark. Truniogt at K=4 means that the POD
decomposition achieved a dimensionality reductimmf 4569 to 4. Such a high reduction might
seem surprising but this is because changes irithensions and elastic constants exhibit field
variations characterized by relatively low dimemsitity. When varying the input parameters the
variations of a point of the field are obviouslytmompletely independent from the variations of its
neighbors. We have found that characterizing tvasmtions in a modal basis of dimensions four
already leads to a small error.

Since the fields will be used for identificationtramly the accuracy of the fields is important but
also the accuracy of the derivates of the fielcdhwitspect to the ply-elastic constants. This was
verified and we found that four POD coefficients &ach field are also sufficient for representing
the derivates accurately enough. For details théeecan refer to [15].

On a final note the identification procedure wieuthe POD projection of the displacement
fields, which will filter out some information prexst in the initial fields. This can have both pesit
and negative effects. Obvious negative effectgtmethe identification procedure will not be atie
account for any information that was filtered ontiahat might have been useful to the identificatio
or the propagation of uncertainties. On the otlaerdhf the information filtered out is mainly regat
to the analysis tools used (e.g. phase extractgorithm) it can be useful to leave out these acti$
since they do not have physical meaning in relaiotihe material properties. An investigation o th
errors left out was carried out in [15] (Chapter @hd we found it is reasonable to do the
identification on the POD coefficients.

4 Response surface approximations

Even though we reduced the dimensionality of tHefield using the POD decomposition, the
calculation of the POD coefficients is up to novll biased on finite element results. Since about 70
million evaluations need to be used for the Bayesdentification procedure, finite element
simulations remain prohibitive so we will seek tmstruct computationally cheap approximations of
the POD coefficientsy,, as functions of the four elastic constants tadeatified and the thickness
of the plate, which has some uncertainty that wetw@account for.

For this purpose we use response surface methodoRegsponse surface methodology or
surrogate modeling is a technique used to apprdgirtiee response of a structure, which is known
only in a finite and usually small number of pointéie points where the response is known, which
constitute the design of experiments (DoE), ateditwith a particular function depending on the
response surface approximation (RSA) type used.omnoson RSA is the polynomial response
surface (PRS), which fits the simulation occurrené®m the DoE with a polynomial so as to
minimize the square difference between the simutatand the prediction of the PRS. The accuracy
of the approximation can then be estimated usidgators such as RMS error or cross validation
error. For more details on RSA techniques the neeale refer to [16].

For the present problem we employed response sugiagroximations for each POD coefficient,
of the formoy=PRSE;, B, vi, Gip, h). Third degree polynomial response surface appraiions
were constructed from the same 200 samples tha wssd in the previous section to construct the
POD basis. These 200 points were sampled using bgpercube within the bounds given in Table
2.

The error measures used to assess the qualityedR8A fits are given in Table 5 for the first
four POD coefficients of tht) fields and in Table 6 for those of thefields. The second row gives
the mean value of the POD coefficient across th&gdeof experiments (DoE). The third row
provides the standard deviation of the coefficiemi®ss the DoE, which gives an idea of magnitude
of variation in the coefficients. Row four providg§ the correlation coefficient obtained for the fit,
while row five gives the root mean square error agnthe DoE points. The final column gives the
cross validation PRESS error [17].
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Table 5. Error measures for RSA of the U-field POD.

POD coefficient RSA

o4 oo o3 Oy
Mean value ofy, -4.04 10" -3.40 10° -2.20 10° -8.35 10
Standard deviation a; 8.19 1(? 6.92 1¢* 2.01 1¢* 2.80 1(°
R? 0.99999 0.99993 0.99992 0.99951
RMS error 2.77 16 6.32 1¢° 2.011¢ 6.75 10
PRESS error 3.61 10 7.92 10 2.67 1¢° 9.33 10
Table 6. Error measures for RSA of the V-field POD.
POD coefficient RSA o o o3 Oy
Mean value ofy, -2.97 10 -9.51 10° -2.14 10 9.76 10
Standard deviation af 5.40 10 2.26 10° 3.10 10 1.50 10°
R? 0.99999 0.99992 0.99987 0.99830
RMS error 1.69 16 2.26 10° 3.88 1¢° 6.89 10/
PRESS error 2.45 10 3.05 10 5.27 1¢ 1.04 10°

Comparing the error measures to the standard davwsaof the coefficients we considered that
the RSA are accurate enough to be used in theifidation process, with the approximation error
being negligible compared to the other sourcesoéttainty.

5 Bayesian identification

5.1 Bayesian formulation

In Bayesian identification we seek to identify tjuent probability distribution of the elastic
constantE;, B, vq,, Gi» given the measured displacement fields on the bpénplate. Denoting by
f probability density functions (PDF), then the PbBat we seek, also called posterior PDF, is given
by Bayes’ formula:

1 )
g (E) = e (™) 12 () %

whereE = { E;, B, vis, G5} is the four dimensional random variable of thg-plastic constants.
a :{alu N, e 4 ..a‘j} is the eight dimensional random variable of the R€Bfficients of theJ

and V field.a"“eas“'e:{aff"“""”‘5““9,...,0'4u measuregy, Y meas“f?a4'v”‘ea}“‘is the vector of the eight

“measured” POD coefficients, obtained by projecting measured full fields onto the POD basis.
Equation 7 provides the joint probability densitynétion (PDF) of the four elastic constants

given the coefficients™***"? This PDF, also called posterior PDF and denofgd. ....(E) ., is

equal to a normalizing constant times the likelidhdonction of the elastic constarsgiven the
coefficientsa™***""times the prior distribution of the elastic comssi.

The prior distribution oE reflects the prior knowledge we have on the edaginstants based on
manufacturer’'s specifications for example. The mealue of the distribution was based on the
manufacturer's specifications for the Tofagrepreg. We assumed that we have relatively vague
prior knowledge by defining a joint uncorrelatedrmal prior distribution with relatively wide
standard deviations (10%) as defined in Table & pifor distribution was truncated at the bounds
given in Table 8, which were chosen in an iterativaey such that eventually the mean of the
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posterior PDF is approximately in the center oftbends and their range covers approximately four
standard deviations of the posterior PDF.

Table 7. Normal uncorrelated prior distribution thie material properties for a graphite/epoxy
composite material.

Parameter KGPa) & (GPa) V1o G, (GPa)

Mean value 162 7.58 0.34 4.41

Standard deviation 16 0.75 0.03 0.5
Table 8. Truncation bounds on the prior distriboitod the material properties

Parameter HGPa) E(GPa) V12 G2 (GPa)

Lower truncation bound 126 6 0.26 4.25

Upper truncation bound 151 9.5 0.36 5.75

The other term on the right hand side of Equatiois the likelihood function of the elastic
constants given the POD coefficieaf8**""¢ This function provides an estimate of the liketld of
differentE values given the test results.

The uncertainty in the POD coefficients can haveesd causes, which are detailed next. A
typical cause of uncertainty in the problem is noeasient error. In the case of full field
measurements we usually obtain a noisy field, whiah possibly be decomposed into a signal
component and a white noise component. We showgibirthat a Gaussian white noise on the full
fields can be modeled by Gaussian distributionshenPOD coefficients, having zero mean and the
same standard deviation as the noise on the fiéld&e that this does not mean that there is no
filtering effect through the use of the POD coa#its; while the standard deviations are the same
the resulting fields will be different since theis® does not act on the same quantities (POD
coefficients versus displacement values).

Another uncertainty in the identification process due to uncertainty in the other input
parameters of the plate model such as the thickn®ser sources of uncertainty, such as
misalignment of the center of the hole or misaligminof the loading direction can also be present.
These could also be accounted for in the Bayes@entification by a more complex
parameterization of the numerical finite elemendeloWe directly parameterized uncertainty in the
thickness of the plath, which was assumed to be distributed normally \aitmean value of 0.78
mm (the prescribed specimen thickness) and a sthmdaiation of 0.005 mm (the typical accuracy
of a microcaliper). Alignment uncertainty as we#l ather sources of modeling uncertainty were
considered indirectly, with somewhat decreasedifidéhrough a generic uncertainty term on the
POD coefficients that had zero mean and a stardkarn@tion of 0.4% of the mean value of the POD
coefficients. For more details on the uncertainbdeling refer to [15].

5.2 Numerical procedure

The expensive part in the Bayesian identificatiggpraach used is the calculation of the
likelihood function, since Monte Carlo simulatioae used. The POD method and response surface
methodology served for reducing the cost associatédthe construction of the likelihood function.

A flowchart overview of the utilized procedurepigsented in Figure 8.
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POD
coef. forinput parameters

Figure 8. Flow chart of the procedure used to dateuhe likelihood function. Cost reduction is
shown in green and dimensionality reduction in red.

The likelihood function is computed point by poiwithin the prior distribution’s support
(truncation bounds) at a grid in the four-dimenslospace of the material properties= { E;, B,
vi2, Git. We chose a 17grid, which is a compromise between convergencecamputational cost
considerations.

At each of the grid point€ is fixed and we need to evaluate the probabilégpgity function

(PDF) of the POD coefficients,f, . e (@), at the pointa= a™". The PDF of the POD

coefficients is determined by propagating througlonké Carlo with 4000 simulations the

uncertainties in the plate thickness and addingampsed value of the normally distributed

uncertainty in the POD coefficients resulting frameasurement and modeling uncertainty, as
described in the previous subsection.

Physical considerations showed that the resultengptes must be close to Gaussian so the
samples were replaced by the normal distributi@vjrig the sample mean and variance-covariance
matrix. This Gaussian nature is due to the fact tiia uncertainty resulting from the measurement
noise is Gaussian and the uncertainty due to tegkis proportional to i/ which can in this case

be well approximated by a normal distribution. Thstribution f____.. (a) was then evaluated at

the pointa= a™**""$ leading to f (a"‘eas‘”e). In this way we obtain a discretized likelihood

a/E:Efixed
function, which multiplied by the prior distributiogives us the posterior distribution of the elasti
constants that we seek to identify.

At this point we want to make the following noteeVibund that the overall uncertainty on the
POD coefficients is close to normal, which mearat the Bayesian identification could have been
treated within a purely analytical framework, thasoiding the need for expensive Monte Carlo
simulations. The analytical treatment would howelvave no longer been possible if uncertainties
on other input parameters would have been congldesgling to a clearly non-Gaussian distribution
on the POD coefficients. In such a case the MordadoCsimulations based approach would still
work and we kept it here for generality.

The Bayesian numerical procedure was first testedaosimulated experiment where good
agreement between the true values and most likelytified values of the properties was found. For
details on the identification on the simulated ekpent the reader can refer to [15].
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5.3 Identification results and discussion

The Bayesian framework does not identify a singtdu® for each of the four ply-elastic
constants but a probability distribution functiolacacterizing the properties as well as the
uncertainties with which these are obtained. Apmgyihe Bayesian procedure to the experimental
displacement fields described in Section 2 leadbeédour-dimensional joint probability distributio
characterized by the mean value, coefficient ofatimn and correlation given in Tables 9 and 10.

Table 9. Mean values and coefficient of variatibthe identified posterior distribution based dme t
Moiré interferometry full fields from an open hdknsile test.

Parameter KGPa) & (GPa) V12 G2 (GPa)
Mean value 138 7.48 0.33 5.02
COV (%) 3.1 9.5 10.3 4.3

Table 10. Correlation matrix (symmetric) of thentléed posterior distribution based on the Moiré
interferometry full fields from an open hole teesiést.

E = V12 G12
E; 1 0.020 -0.045 0.52
E, - 1 -0.005 -0.17
V1o - - 1 0.24
G - - - 1

We note first that the coefficients of variationtiviwhich the properties are identified vary
greatly from one property to another. While thegitudinal Young's modulug€s; of the ply is
identified most accurately, the Poisson’s ratipof the ply is identified with the highest uncenti
This trend has been often noted in the compositesnunity, since repeated tests on a same
specimen typically lead to much higher dispersiosome properties than in others (Poisson’s ratio
and shear modulus are typically known more podghyis identified here with a higher uncertainty
than Gy,. This is due to the stacking sequence [45,-45yhich does not have a 90° ply, thus
making it more difficult to identifye, from the traction test in the 1-direction.

We also note that some of the correlation coeffitseare significant. This is an important result
and we could not find any previous study giving toerelation matrix of the orthotropic constants
identified. Ignoring the correlation would leaddignificantly overestimating the uncertainty in the
identified properties. The results of Tables 9 dfidcan thus provide a more realistic model of
experimental uncertainty compared the uncorrelatedlels that are often used in probabilistic
studies.

Finally, looking at the mean values of the ideantifidistribution we note a good agreement with
the manufacturer’'s specifications, except Ear This might seem surprising, however Noh [18]
found a similar value on the exact same preprdghat we used (cf. Table 1). The mean values of
E,, vi» and Gy, are close to the specification valu€s, is far however from Noh’s values but it
should be noted that the four point bending testletively poor for identifyings, .

Thus, while it might seem surprising that the propdhat is identified with the lowest
uncertainty E;) is also the one which is the furthest away fréw nanufacturer’s specifications, it
is important to recall that the identification daest account for inter-specimen variability or inte
prepreg batch variability of the material propesti€hus if the specimen deviates somewhat from the
manufacturer’s specification, it is not contradrgtthat, while identifying a property far away from
the specifications, this can still be the propedgntified with the lowest uncertainty. The other
variabilities, not identified by the Bayesian meathevould then have to be estimated by repeating
tests on multiple specimens coming from differemggpeg rolls.
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On a final note, probabilistic studies in structutesign often use variability models in order to
estimate the probability of failure. The varialyilitan be estimated or propagated through the
physics of the problem. In all the cases an imporgart of the total uncertainty stems from the
measurements. Uncorrelated uncertainty modelsfega ased for the experimental uncertainty due
to lack of better estimates and this can lead torerin the probability of failure. The Bayesian
identification approach offers the possibility tagrove the models of experimental uncertainty by
providing correlation data. Initial studies on tingpact of the correlation models on experimental
uncertainty are presented in [19].

6 Conclusions

We considered in the present article the problenartfotropic elastic constants identification
based on full field displacement measurements @age with a hole. Moiré interferometry was
carried out during the open hole tensile test awngiged the experimental data for the identificatio
Bayesian identification was used in order to idgnéi probability distribution for the ply-elastic
constants, thus characterizing the uncertainty witich the properties can be found from the given
open hole tensile on the given specimen.

In order to make the Bayesian approach computdljofeasible for the considered problem we
had to solve two issues: the high dimensionalitthefmeasurement data and the computational cost
of the numerical model. These issues were addrdsseding proper orthogonal decomposition to
drastically reduce the dimensionality of the fielisd by using response surface methodology to
replace the expensive finite element simulations.

The identified probability distribution showed thtae four orthotropic elastic constants are not
identified with the same confidence. While the lbndinal Young’'s modulus was identified with
the lowest standard deviation, the Poisson’s ratas identified with the highest uncertainty.
Furthermore the properties were identified with imagligible correlation. The Bayesian approach
allowed to quantify these various items (mean \&lgtandard deviations, correlations).

The longitudinal Young’s modulus was also foundbi far away from the manufacturer’s
specifications. This was consistent however wivjous test results on the same prepreg roll using
traditional four point bending tests.

Finally, it is important to note that the distritmrt determined by Bayesian identification is only
part of the total uncertainty present in designbjgms and additional variability need to be
determined by repeating tests multiple times.
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