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ABSTRACT 

 
Spatial variability in material properties and in the coefficient of thermal 

expansion (CTE) in particular can have detrimental effects on thermally induced 
buckling by lowering the buckling load. Worst-case effects of this variability were 
studied by anti-optimization on a plate subjected to thermal loading for up to 20% 
variation in CTE around a fixed mean. Finite element analyses were used to construct 
a response surface approximation of the buckling eigenvalues as function of the 
spatial variations of the CTE. Optimizing the spatial variations for lowest buckling 
eigenvalue led to worst-case CTE distributions with respect to the thermal buckling 
studied. It was found that for the same CTE mean these distributions could lead to up 
to 10% lower eigenvalues. Such anti-optimal distributions tend to lead to higher than 
average CTE along the centerline of the plate, which increases the pre-buckling 
stresses in those area which from the buckling point of view are the most sensitive to 
high stresses. For composites, CTE variations were also assumed to be caused by 
variations in fiber volume fraction, which would also affect moduli and Poisson ratio. 
The worst distribution of fiber volume fraction led to a reduction in eigenvalues of 
only about 4.3%, meaning that fiber volume fraction induced CTE variations have 
much milder effects on thermal buckling than independent CTE variations, due to the 
effects of individual material properties variations partially cancelling each other out.  
 

 
 

1. INTRODUCTION 
 

Thermally induced buckling is often a concern in the design of structures subject 
to high temperatures. For example, for an integrated thermal protection system (ITPS) 
for spacecraft atmospheric reentry, which has to simultaneously  fulfill  structural  and  
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thermal insulation functions, local buckling was determined to be a critical failure 
mode (cf. [1],[2]). Other typical structures designed against thermally induced local 
buckling are wings for supersonic aircraft. A review of this topic can be found in [3]. 

Alongside deterministic design of these structures against buckling another 
important aspect is determining the effect of uncertainty/variability in material 
properties and designing accordingly. This allows building better structures by 
avoiding unnecessary conservativeness.  

Buckling with uncertain overall material properties has been studied numerous 
times on many different types of structures. A less studied topic however is buckling 
with spatially uncertain material properties. This means that while a specimen would 
have certain overall material properties, these may slightly vary from one point to 
another. This spatial variability usually has different sources than the uncertainty in 
overall material properties and for most metallic materials this kind of spatial 
variability is usually small enough to be neglected. However in the case of composites 
there are many possible uncertainty levels (fiber orientation, fiber volume fraction, 
individual properties of the constituents, manufacturing process) which for a single 
specimen can already lead to substantial variability of the material properties from one 
point to the other, i.e. spatial variability. 

The closest studies the authors could find related to the impact of spatial 
variability on buckling are those analyzing variations in fiber orientations or fiber 
volume fraction. We can cite [4] which looks at how non-uniform distributions of 
fiber volume fraction impact vibration and buckling of a rectangular simply supported 
plate. This study was however limited to pure mechanical loading.  

In the present paper we also consider a rectangular plate but we are interested in 
thermal loading and spatial variability of the coefficient of thermal expansion (CTE) 
in particular. This thermal case is interesting notably because variability is often high 
for ceramic matrix composites for example used at higher temperatures. Before taking 
into account spatial variability of material properties in a probabilistic way however, it 
is important to know the worst-case effect of spatial properties variations on buckling. 
So our aim in this paper is to determine the worst possible spatial distribution of the 
CTE, i.e. the distribution that would decrease the buckling eigenvalue the most. This 
allows to gauge the extent of this detrimental effect. It also sets a baseline for 
comparison of the gains when statistical variability models and probabilistic design 
are used.   

Formally the problem of finding “bad” CTE spatial distributions is equivalent to 
finding “bad” temperature spatial distributions, since the CTE and the temperature 
always appear together as the product α·∆T . Buckling of plates with variable spatial 
temperature distributions is relatively well studied. In 1952 Gossard pioneered the 
work in this domain with an extensive experimental study of tent-like spatial 
temperature distributions [5]. Few years later analytical derivations for buckling of   
plates were obtained for arbitrary symmetrical temperature distributions (cf. [6],[7]). 
More recently combined experimental – finite element post-buckling analyses for a 
tent-like spatial temperature distribution were carried out by Thornton [8] and Hernan 
[9].  



However, even in the literature on spatial temperature variations the authors could 
not find a systematic study of worst-case distributions. While the analytical 
derivations for arbitrary symmetrical distributions described in [6] and [7] could 
potentially serve as a basis for such a study, the analytical procedures are relatively 
hard to implement and verify and in addition they are approximate and relatively 
limited in use. Accordingly we chose to conduct our study on worst-case CTE 
distributions based on finite element (FE) simulations, which provide significant 
flexibility. Response surface approximations (RSA) of the lowest buckling 
eigenvalues were constructed from these simulations. Coupling of the RSAs with an 
optimization routine allowed us to obtain the worst-case CTE distributions. Not 
having found any previous studies on the effect on buckling of spatial CTE variations, 
we decided to start with the case of isotropic materials before going over to 
composites. 

In section 2 we describe the general procedure used. In 2.1 we present the 
thermally induced buckling problem considered and the corresponding finite element 
model. In section 2.2 the construction of the response surface approximation of the 
buckling eigenvalue is described and in section 2.3 we present the anti-optimization 
process for finding the worst-case distribution. In section 3 we study the case of an 
isotropic material and in section 4 the case of a composite panel. Section 4.1 gives 
results when the CTE is assumed to vary independently of the other material 
properties while 4.2 provides results when CTE variation are generated by fiber 
volume fraction variations which also impact other elastic material properties. In 
section 5 we provide concluding remarks and an overview of future work.   

 

2. PROCEDURE 
 
2.1 Thermal buckling problem 

 
We chose to analyze the following plate buckling problem, which is a reasonable 

approximation for a wide variety of problems including the integrated thermal 
protection system panel design [1],[2]. We considered a square plate restrained in one 
direction but free to expand in the transverse in plane direction (cf. Figure 1). The out 
of plane boundary conditions are simply supported on all four sides. The plate is 
subject to a constant, uniform temperature change ∆T, while the coefficient of thermal 
expansion α can vary from one point to another. In this kind of thermal problem the 
buckling eigenvalue is the coefficient multiplying ∆T in order to obtain the critical 
temperature change ∆TC. We seek to determine the buckling eigenvalue 
corresponding to the first buckling mode and we chose to analyze cases for both 
isotropic and composite materials. The isotropic material case would allow us to build 
up a good understanding of the physics involved. 



 
Figure 1. Schematic of the buckling problem. Out-of-plane all four sides are simply supported. 

 
 
To obtain the buckling eigenvalues for variable CTE distributions this problem 

was modeled using the Abaqus® commercial finite element software. A FE model was 
constructed using 8-node shell elements with 5 degrees of freedom per node (S8R5), 
which are thin plate elements. A total of 400 elements were used. For a uniform CTE 
distribution for which the analytical solution is well known this finite element model 
was in agreement to within 0.17% of the analytical buckling eigenvalue. The spatial 
variations in material properties were obtained by assigning properties individually for 
each element. 

 

2.2 Buckling eigenvalue response surface approximation 
 

The coefficient of thermal expansion (CTE) spatial distribution is described by the 
following truncated double trigonometric series: 
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If N and M tend to infinity the series can represent any arbitrary symmetrical CTE 

distribution. In most cases we will chose to truncate the series at N=M=3 which leads 
to a distribution described by a total of 16 αij coefficients.   

In order to find the worst-case CTE distribution we use an optimization procedure 
which seeks the αij coefficients that lead to the lowest buckling eigenvalue. Coupling 
the optimization directly with the finite element buckling analysis would be however 
too computationally expensive, so we chose to construct a response surface 
approximation (RSA) of the buckling eigenvalue as a function of the αij coefficients. 

Response surface approximation or surrogate modeling is a technique used to 
approximate the response of a process which is known only in a finite and usually 
small number of points. The points where the response is known, which constitute the 
design of experiments (DoE), are fitted with a particular function depending on the 
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RSA type used. A common RSA type is the polynomial response surface (PRS), 
which fits the simulation occurrences from the DoE with a polynomial such that the 
least square difference between the simulations and the prediction of the PRS is as 
small as possible. The accuracy of the approximation can then be estimated using 
indicators such as RMS error or PRESS error. For more details on RSA techniques 
refer to [10]. 

In our case we fitted the first buckling eigenvalue of the plate with a cubic 
polynomial response surface in the αij coefficients. We used the Surrogates Toolbox 
[11], a free open-source Matlab add-on toolbox for RSA fitting. 
 
2.3 Anti-optimization problem 

 
The response surface approximation obtained can now be coupled directly to an 

optimization procedure seeking the worst-case CTE distribution. Formally this is an 
optimization process, however since we are looking for the worst possible point, i.e. 
anti-optimal from a designer’s point of view, the whole procedure is often called anti-
optimization. This term was initially coined by Elishakoff in 1990 [12],[13] and has 
been applied since to a variety of problems [14],[15]. 

The anti-optimization problem can be stated as following:  
arg min( ( ))

ij

ij
α

λ α  

i.e. find the coefficients αij which minimize the first buckling eigenvalue λ subject 
to the following constraints:  

- maintain a given mean CTE value: 02
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The entire procedure is coded in Matlab and solved using the fmincon 
optimization routine. Initially the optimization was started from multiple points but it 
was found that they all converged to the same minimum. Accordingly, for the rest the 
starting point was chosen as the uniform CTE distribution.  
 

 

3. WORST-CASE CTE DISTRIBUTION FOR ISOTROPIC MATERIALS 
 

3.1 Input parameters and results 
 

The aforementioned procedure was applied first to an isotropic material to gain 
basic knowledge of what creates “bad” CTE distributions with respect to buckling. 
The isotropic material considered was fictitious with following properties: Young’s 
modulus E = 131 GPa, Poisson ratio ν=0.23. The coefficient of thermal expansion 
(CTE) had variable spatial distributions α(x,y), with an average value  α0 = 1 
µstrain/K, while the temperature change ∆T is 250K. The dimensions of the plate were 
0.14m x 0.14m and a thickness of 1.5mm.  

An initial finite element run provided the buckling eigenvalue for a uniform CTE 
distribution at the α0 level, which was set as the baseline. The first buckling 
eigenvalue in this case was 1.508 and the corresponding mode (cf. Figure 2) consisted 
of one half sine wave in the x direction and one half sine wave in the y direction, 



typical for buckling of simply supported square plates. The uniform pre-buckling 
stresses in the loading direction  x were -6.5·10 – 4 Pa. The stresses in the transverse y 
direction are zero in all the cases because the plate is free to expand in that direction. 

 

 
Figure 2. Buckling mode shape for the isotropic plate 

 
 

A response surface approximation (RSA) of the buckling eigenvalue was then 
constructed function of the 16 αij coefficients (N=3, M=3 in Eq. (1)). We used a latin 
hypersquare design of experiments (DoE) with 2500 points with the bounds given in 
Table 1. Let us note that even though the larger bounds on the first transverse 
coefficient α01 (cf. Table 1) favor variations in the transverse y direction compared to 
variations in the loading direction x, our initial anti-optimizations were carried out 
with equal bounds on all coefficients and showed the same trend that we find with the 
bounds of Table 1. The bounds were tightened mainly to avoid very high maxima of 
the CTE distribution, which are not relevant to our study, and to improve the accuracy 
of the RSA. 

The 2500 simulations were fitted with a 3rd degree polynomial response surface 
and the RMS error of the fit was 1.58·10 – 4 which is a very low value considering the 
mean of the response which is 1.519. PRESS error was not calculated for the 
following reasons: 16 variables with a 3rd degree polynomial and 2500 simulation 
made calculating PRESS too computationally expensive even using an analytical 
formulation; 2500 simulations is significantly more than 969 which is the minimum 
number of points required to fit this 3rd degree PRS; the RMS error for this fit is 
nevertheless very low. 

The accuracy of the RSA being acceptable, it was introduced in the anti-
optimization process. The anti-optimal CTE distribution found is represented in 
Figure 3 and the corresponding buckling eigenvalue was 1.359 (FE and RSA 
prediction agreed to within 0.01% at this point). This is a decrease of 9.88% over the 
baseline uniform CTE distribution. It means that the critical buckling ∆T is reduced by 
this amount. The αij coefficients of the anti-optimal distribution are given in Appendix 
1.  

 
Table 1. Bounds on the αij coefficients for the isotropic case 

Coefficient (µstrain/K) α00 α01 all other αij
Lower bound 0.9 -0.25 -0.1 
Upper bound 1.1 0.25 0.1 

 
 



 
Figure 3. Anti-optimal spatial CTE distribution for an isotropic material and 16 αij coefficients 

(N=3, M=3 in Eq. (1)). The corresponding buckling eigenvalue is 1.359. 
 
 
 
The anti-optimal CTE distribution in Figure 2 has very little variations in the x but 

significant variations in the y direction. This led us to attempt an anti-optimization run 
with the αij coefficients describing variations only in the y direction. We used 11 
coefficients (N=0, M=10 in Eq. (1)). The bounds for the variables are again those 
given in Table 1 and we constructed a latin hypersquare DoE with 1300 points 
compared to 364 minimum needed. The resulting 3rd degree polynomial PRS had an 
RMS error of 1.01·10– 3 for a mean of the response of 1.538. 

This RSA was utilized in the optimization procedure as before and the anti-
optimal CTE distribution found this time is represented in Figure 4. The 
corresponding buckling eigenvalue was 1.355, which is a decrease of 10.14% over the 
baseline uniform CTE distribution. FE and RSA prediction agreed at the anti-optimal 
point to within 0.03%. The αij coefficients of the anti-optimal distribution are given in 
Appendix 1. 
 



 
Figure 4. Anti-optimal spatial CTE distribution for an isotropic material with spatial variations 

only in the y direction with 11 αij coefficients (N=0, M=10 in Eq. (1)). The corresponding buckling 
eigenvalue is 1.355. 

 
 

3.2 Discussion of the results 
 
The anti-optimal CTE distribution is very similar when using 16 αij coefficients 

and when using 11 unidirectional αij coefficients and they both show variations mainly 
in the transverse y direction. The anti-optimal CTE distributions will be denoted in 
this section CTE16 and CTE11 respectively. CTE 16 has a slight variation in the 
loading direction (x direction) while CTE11 has a steeper drop in the transverse 
direction (y direction). It should also be noted that CTE11 used only the first 6 
coefficients the higher order terms being close to zero.  

Figures 5 and 6 represent the pre-buckling stresses created by CTE 16 and CTE11 
respectively. The explanation of why the CTE variations are mainly in the transverse 
direction is the following. Overall variations in the x direction make little sense for 
decreasing the buckling eigenvalue since we want high compressive stresses in the 
loading direction x. Overall, x direction CTE variations involve the CTE being below 
average for some x values and over the average for others but the integrated effect 
over the whole x direction length, which is responsible for compressive stresses, 
would be the same as the average leading to little effect. Furthermore considering the 
equilibrium equations of the plate it is difficult to create stress variations in the x 
direction which can only be obtained through shear effects which are relatively small 
for an isotropic plate and the current loading and boundary conditions. So the most 
meaningful variations for changing the buckling eigenvalue are variations in the 
transverse y direction. 



 

 
Figure 5. Pre-buckling stresses in the x direction for CTE16, the anti-optimal CTE distribution 

described by 16 αij coefficients 
 
 

 
Figure 6. Pre-buckling stresses in the x direction for CTE11, the anti-optimal CTE distribution 

described by 11 unidirectional αij coefficients 
 
 
The shape of the transverse variation with higher than average CTE on the 

centerline and lower on the free edges can be explained as follows. We consider the 
thin plate as being approximately equivalent to strips in the loading direction with 
each strip behaving like a beam (cf. Figure 7). The strips close to the edge of the plate 
are very hard to buckle because the edges are simply supported. On the other hand the 
strips in the middle of the plate encounter much less buckling resistance. By having 
higher than average compressive stresses along the x direction centerline of the plate 
(cf. Figure 6) we make it even easier for the strips in the middle of the plate to buckle.  

 
 



 
Figure 7. Representation of the plate considered as being constituted of strips behaving as beams 

 
The preceding interpretation can also be obtained from an energy approach. We 

will not go into the details but by expressing the total potential energy we find that in 
order to decrease the buckling eigenvalue of the plate we need to match the high 
compressive stresses σx areas with areas of high slope in the x direction on the buckled 

mode w
x

∂
∂

.  

In Figure 5 we can indeed note that the highest stresses (always compressive) are 
in the same areas where the slope in the x direction is the highest on the buckled shape 
i.e. along the x direction centerline close to the restrained edges. We can note however 
that the variations along the x direction centerline are small and even inexistent for 
CTE11 while the slope exhibits significant variations. This is because we have to keep 
in mind that it is not possible to create high variations in σx due to the nature of the 
problem and in particular the loading and boundary conditions as already discussed 
before. This means that the anti-optimal CTE distributions are created by high CTE 
along the x direction centerline which creates high stresses at the points of high x 
direction slope even if this has as an auxiliary effect the creation of high stresses in the 
center of the plate which are not required.   

As to the difference between CTE16 and CTE11 pre-buckling stresses and 
corresponding buckling eigenvalues it seems that the more accurate control of the 
transverse CTE variation allows in the case of 11 unidirectional αij coefficients to have 
a better overall match of the compressive stresses with the slope of the buckled shape 
which leads to a slightly lower buckling eigenvalue. We can note though that the 
difference between these two eigenvalues is quite small which means that describing 
the CTE with more αij coefficients is unlikely to bring any significant further 
improvement. 

 

4. WORST-CASE CTE DISTRIBUTION FOR COMPOSITES 
 

For the composite material we considered the IM7/977-2 epoxy carbon fiber 
composite with following properties: E1 = 150 GPa, E2 = 9 GPa, ν = 0.34, G12 = 4.6 
GPa. The CTE in the fiber direction was assumed not to have any spatial variations 
with α1 = 0.45 µstrain/K. This assumption is based on the fact that the fibers have a 

x

y

z
Simply supported (w=0)

Simply supported (w=0)

Beam-like strip 



high Young modulus so they limit most of the expansion, coming then mainly from 
the epoxy matrix. The CTE in the transverse direction is mainly caused by epoxy 
matrix expansion and was assumed to have variable spatial distributions α2(x,y), with 
an average value  α0 = 23 µstrain/K. For this composite laminate case the temperature 
change ∆T was set to 100K. 

We looked at a laminate with a [90,45,-45]s lay-up while the overall plate 
dimensions remained 0.14m x 0.14m and 1.5mm thick. An initial finite element run 
provided the buckling eigenvalue for a uniform α2 distribution with an average of α0, 
which represents the baseline. The first buckling eigenvalue in this case was 1.220 and 
the corresponding mode (cf. Figure 8) consisted of one half sine wave in the x 
direction and a full sine wave in the y direction due to the anisotropy of the material 
properties. The uniform pre-buckling stresses in the loading direction  x in the 90° ply 
were -5.09·107 Pa.  

 

 
Figure 8. Buckling mode shape for the composite plate 

 
 
After choosing the material and the laminate lay-up, we also need to define the 

way we vary the coefficient of thermal expansion. α1, the CTE in the fiber direction, is 
always kept constant as explained before. Then there are two major ways of 
describing α2 variations. First we can do the same as for the isotropic case, i.e. assume 
α2 follows different distribution as described by Eq. (1) independently of any other 
material properties. This is in direct continuity of the isotropic case however it might 
not be the most realistic. A second way of varying the CTE is by assuming that there 
is an underlying physical basis for most of the variation in CTE. In the case of 
composites, fiber volume fraction variations inside the laminate are likely an 
important source of CTE variability. However in this case such variations would also 
impact the moduli and Poisson ratio of a ply. This means that the spatial distributions 
of all the properties will be dependent on the fiber volume fraction variations. We 
analyze next both cases. 

 
4.1 Worst-case distribution for independent CTE variations 

 
First we treat the case of CTE variations that are independent of any other material 

properties, which are kept constant. A response surface approximation (RSA) of the 
buckling eigenvalue was constructed again function of the 16 αij coefficients (N=3, 
M=3 in Eq. (1)). We used a latin hypersquare design of experiments (DoE) with 2500 
FE simulations with the bounds on the αij given in Table 1. These simulations were 



fitted with a 3rd degree polynomial response surface and in this case the RMS error of 
the fit was very small again, 8.84·10 - 5 for a mean of the response of 1.227. 

The RSA was used in the anti-optimization process, which remains the same as 
the one described in section 2.3. The anti-optimal distribution of α2 that we found is 
given in Figure 9. The corresponding buckling eigenvalue was 1.097, which is a 
decrease of 10.08% over the baseline uniform α2 distribution. We had again very good 
agreement between FE and RSA prediction at the anti-optimal point (difference of 
less than 0.01%). Figure 10 presents the pre-buckling stresses in the loading direction 
and Appendix 1 gives the αij coefficients of the anti-optimal distribution. 

We can note that the results obtained are very similar to the ones for an isotropic 
material. The decrease in buckling eigenvalue achieved is almost the same and the 
shapes of the anti-optimal CTE distributions are also very similar, in spite of the fact 
that the buckling mode of the composite plate was two half sine waves instead of one 
for the isotropic plate. This is because increasing the aspect ratio or equivalently 
imposing material anisotropy which increases the number of waves in the buckling 
mode is equivalent to repeating the same CTE pattern by using symmetry 
considerations. In the present case since the CTE distribution of Figure 3 does not 
present any transverse variations a symmetry with respect to the X = 0 axis will lead 
to the same overall distribution which is what we see happening in Figure 6 for the 
two waves buckling mode. 

 

 
Figure 9. Anti-optimal spatial α2 distribution for a composite material with independent α2 

variations and 16 αij coefficients (N=3, M=3 in Eq. (1)). The corresponding buckling eigenvalue is 
1.097. 

 
 



 
Figure 10. Pre-buckling stresses in the x direction in the 90° ply for the composite case with 

independent α2 variations 
 

 
4.2 Worst-case distribution for fiber volume fraction dependent CTE variations 

 
In this section we are still looking for the anti-optimal α2 distribution however the 

variations in α2 are caused by variations in fiber volume fraction which also affect all 
the other elastic material properties. The properties variations were related to fiber 
volume fraction as follows. 

We used the published results in [16],[17] which give the relationship of 
graphite/epoxy properties to fiber volume fraction. Using these results we assumed a 
linear relationship between the properties and the fiber volume fraction (vf), which is a 
reasonable approximation over almost the entire vf range (0.05-0.95). The linear trend 
was applied to the IM7/977-2 properties and the equations used are given below. The 
nominal material properties provided at the beginning of this section and which were 
used for the uniform CTE distribution were for vf = 0.6. 
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In order to keep the results comparable to the previous ones we assumed volume 

fraction variations such that α2 varies by a maximum of +/-20%. This corresponds to 
maximum variations of vf between 0.44 and 0.76. Note that for the sake of simplicity 
we continued to use as optimization variables the αij coefficients instead of using 
equivalent coefficients on vf. These two ways are however strictly equivalent and we 
will present the anti-optimal results both in terms of α2 as well as in terms of vf spatial 
distributions. 



Using the FE model described in section 2.1 again, but with the dependent 
material properties from Eq. (2) we constructed a new RSA of the buckling 
eigenvalue. The spatial variations were described by 9 αij coefficients (N=2, M=2 in 
Eq. (1)) with the bounds given in Table 2. We calculated the corresponding vf each 
time and then propagated the variations to all the other properties using Eq. (2).  

We limited ourselves to 9 coefficients and smaller bounds compared to previously 
because otherwise the maximum variations of the CTE allowed by Eq. (1) would have 
been too great to be able to be modeled through fiber volume fraction variations. To 
compute the RSA we used a latin hypersquare DoE with 900 FE simulations which 
was fitted with a 3rd degree polynomial. The corresponding RMS error of the fit was 
7.95·10 - 5, which is again more than acceptable (average of the response was 1.222). 

 
Table 2. Bounds on the αij coefficients for the composite case with dependent 

material properties 
Coefficient (µstrain/K) α00 α01 α02 all other αij 

Lower bound 0.98 -0.25 -0.05 -0.025 
Upper bound 1.02 0.25 0.05 0.025 

 
The anti-optimization procedure found the α2 distribution shown in Figure 11 and 

the corresponding vf distribution in Figure 12. The buckling eigenvalue was 1.167 
which is a decrease of 4.34% over the baseline uniform α2 distribution. FE and RSA 
prediction agreed at the anti-optimal point to within 0.01%. The αij coefficients of the 
anti-optimal distribution are given in Appendix 1. 

The first remark we can make is that we obtain here two bumps in the CTE. 
However we have to keep in mind that for the composite plate the lowest buckling 
mode has two half sine waves in the x direction (cf. Figure 8) which explains the two 
bumps.  

The plot of the stresses in the x direction for the 90° ply is given in Figure 13 and 
the same interpretation as for the isotropic case can be made: the CTE distribution 
tries to create high compressive stresses in the high x direction slope areas. Note that 
most parts of the discussion following will concentrate only on this 90° ply which is 
the most relevant in this thermal expansion problem with the present boundary 
conditions.  

To explain why we obtain two bumps here but not in the composite case of the 
previous subsection this is most certainly related to the number of coefficients 
describing the CTE variations. As we have seen for the isotropic case too, the anti-
optimal CTE (cf. Figure 4) has a relatively steep drop in the y direction (up to the 6th 
order cosine term). Here we allow variations only up to a 3rd order cosine term in the y 
direction and in the case of the previous subsection for independent CTE variations 
we allowed up to 4th order cosine variations. It seems that 4th order cosine CTE 
variations allow a steep enough y transverse drop in CTE so that the corresponding 
eigenvalue is lower than what could be obtained with x or x-y combination terms of 
the same order. For 3rd order cosine variations this seems not to be yet the case, which 
explains the results obtained.  

We should note however that for all the cases we have seen, the main trend of the 
anti-optimization is to concentrate high CTE areas along the x direction centerline of 
the plate. This trend is once again confirmed here and is consistent with the physical 
interpretation we gave in section 3.2.  



 

 
Figure 11. Anti-optimal α2 spatial distribution for a composite material with fiber volume 

fraction dependent α2 variations and 9 αij coefficients (N=2, M=2 in Eq. (1)). The corresponding 
buckling eigenvalue is 1.167. 

 
 

 
Figure 12. Anti-optimal vf spatial distribution for a composite material with fiber volume fraction 

dependent material properties. This is the underlying vf distribution corresponding to the anti-
optimal α2 distribution of Figure 11. 



 

 
Figure 13. Pre-buckling stresses in the x direction in the 90° ply for the composite case with fiber 

volume fraction dependent α2 variations 
 
 
A second important remark is that the change in the buckling eigenvalue obtained 

here is more than two times smaller than what was obtained in the previous composite 
case with independent CTE variations. This significant difference means that fiber 
volume fraction dependent α2 variations effects are much milder for buckling from a 
designer’s point of view than independent α2 variations.  

This effect can be explained as follows. For fiber volume fraction dependent 
material properties high local α2 areas result from high fiber volume fraction. 
However high fiber volume fraction also means locally lower E1 and E2 moduli. To 
understand each effect separately we calculated the buckling eigenvalue for the anti-
optimal vf distribution (cf. Figure 12) when each property is varied individually 
(according to the fiber volume fraction relationships of Eq. (2) one by one) while all 
the other properties are kept constant. The results are shown in Table 3. We can see 
that if α2 spatial variations are considered alone with the distributions of the other 
properties uniform we have a decrease of the CTE. However if E2 is varied alone for 
the same underlying vf distribution we obtain an increase in the buckling eigenvalue. 
The individual effects partially cancel each other out which explains why the decrease 
for the anti-optimal distribution is about two times lower when assuming dependent 
material properties. We can note that summing up the individual effects leads indeed 
to a buckling eigenvalue of 1.167 (last column in Table 3), which is what we found 
when varying all the properties simultaneously.  

 
Table 3. Effects of individual variations in the material properties. One property 
is varied at a time according to the anti-optimal vf distribution of Figure 12 while 

all the other properties are kept constant. 
 Initial 

uniform 
distribution 

α2 alone E1 alone E2 alone G12 
alone 

ν12 
alone 

All 
combined 

Eigenvalue 1.220 1.135 1.170 1.280 1.242 1.220 1.167 
% difference to 

uniform - -6.96% -4.09% +4.92% +1.80% 0% -4.34% 



 
To further refine the analysis of the overall effects of vf spatial variations we can 

note that the corresponding pre-buckling stresses (cf. Figure 13) have a much lower 
amplitude of variation (about 7%) compared to the case when α2 is varied alone 
(about 30%). This is because the effects on stresses of the combined variation of all 
the elastic properties partially cancel each other out again. For example the effect of α2 
variations, which has a positive effect on enhancing the pre-buckling stress 
distribution, is cancelled out by the simultaneous E2 variation. 

On the other hand the same E2 variations which are responsible for decreasing the 
pre-buckling stresses amplitude variations have the effect of favoring buckling due to 
the lower stiffness along the x direction centerline of the plate. So E2 has opposite 
effects whether we look at the pre-buckling stresses or buckling itself and it turns out 
that the overall effect on the eigenvalue is of slightly preventing buckling (+4.92% 
increase in eigenvalue as seen in Table 3).  

The overall effect when all the properties are varied in the same time according to 
the anti-optimal vf distribution (last column in Table 3) is to decrease the buckling 
eigenvalue by -4.34%, which is however about two times lower than the decrease that 
was achieved in section 4.1 when anti-optimizing for α2 variations alone. 
 

 
5. CONCLUSIONS AND FUTURE WORK 

 
In order to find the anti-optimal (or worst-case scenario) spatial variations of the 

coefficient of thermal expansion (CTE) as far as thermally induced buckling is 
concerned we constructed the following procedure. Using a finite element model of 
the plate buckling problem we constructed a response surface approximation (RSA) of 
the first buckling eigenvalue as a function of the spatial distribution of the CTE, 
distribution described by a truncated double trigonometric series. This RSA was used 
in an optimization procedure with the aim of finding the spatial distribution that 
minimizes the eigenvalue (i.e. find the worst-case or anti-optimal eigenvalue) under 
constraints on the average CTE (kept at a given value) and constraints on the 
maximum spatial variations (less than +/-20%).  

We found that the anti-optimal CTE distribution tend to concentrate higher than 
average CTE areas along the centerline of the plate in the loading direction and lower 
than average CTE areas along the free edges of the plate. The decrease in the buckling 
eigenvalue for the anti-optimal CTE distributions was up to -10.14% for the isotropic 
materials and up to -10.08% for composite materials. However in the case of 
composites, if we make the realistic assumption that the CTE variations are caused by 
local variations in fiber volume fraction instead of being independent, then the 
decrease is only -4.34%. This is good news from a designer’s point of view since if he 
assumes independent CTE variations when computing a worst-case scenario he will 
be on the safe side (probably at the expense of weight or other performance though). 

Future work will consist in the analysis of the effects of spatial variations on 
buckling in a statistical way. While the current study provided the worst-case 
distributions, these are not very likely to occur randomly. Using statistically obtained 
spatial distributions we want to get the probability distribution of the decrease in 
buckling eigenvalue. The designs corresponding to a certain confidence interval on 
this decrease can than be contrasted to the worst-case designs we found in this study 



and potential weight savings can be deduced by using the probabilistic design method 
instead of the traditional safety factor method based on worst-case scenarios.  
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APPENDIX 1: αij COEFFICIENTS OF THE ANTI-OPTIMAL CTE 
DISTRIBUTIONS 

 
 
We provide here the αij coefficients to be used in Eq. (1) corresponding to each 

anti-optimal CTE distribution case. 
 

 Isotropic 
CTE 16 

Isotropic  
CTE11 

Composite 
independent 

CTE16 

Composite  
vf dependence 

CTE9 
α00 1.00E-06 1.00E-06 2.30E-05 2.30E-05 
α01 -2.26E-07 -2.46E-07 -5.36E-06 -4.02E-06 
α02 6.55E-11 -4.17E-10 -2.25E-11 -3.29E-07 
α03 3.74E-08 6.01E-08 8.49E-07 5.74E-07 
α10 -2.11E-08 - 2.84E-11 -3.71E-07 
α11 3.48E-12 - 2.39E-11 -3.56E-07 
α12 3.78E-08 - -8.91E-11 -5.74E-07 
α13 7.10E-11 - 3.74E-11 5.75E-07 
α20 3.84E-11 - 2.38E-11 2.51E-07 
α21 5.89E-09 - 2.39E-11 - 
α22 -4.85E-11 - -5.81E-11 - 
α23 -3.77E-10 - 1.86E-11 - 
α30 -2.03E-09 - 3.11E-11 - 
α31 -1.79E-11 - -3.98E-12 - 
α32 2.45E-09 - -7.19E-11 - 
α33 -4.53E-11 - 7.84E-12 - 
α04 - 1.51E-09 - - 
α05 - -1.72E-08 - - 
α06 - -2.86E-09 - - 
α07 - 1.96E-09 - - 
α08 - 3.95E-09 - - 
α09 - 7.00E-10 - - 
α 0 10 - -2.18E-09 - - 

 
 

 


