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Abstract

In this paper, a new convolution long short-termmemory networksmodel (CNN-LSTM), rotor finite elementmimetic

neural network (RFEMNN), is proposed and used for the diagnostics of rotor unbalance and shaft crack faults.

RFEMNN aims to accomplish the recognition and localization of faults in the rotor structure. In this context,

“Mimetic” refers to two levels: the topology of the structural division of the rotor finite element model through

custom layers design and the topology of finite element solution process data flow by designing interlayer connec-

tions. The “Mimetic” theory is a new paradigm of physics-informed structure that enhances the physics consistency

of machine learning (ML) and does not require complete and analytic physical knowledge with all known parame-

ters. To train RFEMNN, this paper proposes a multi-label and multi-task supervised learning approach with one-hot

encoded fault type labels, fault location labels, and vibration behavior labels. These labels are also involved in the

training process of other tasks through the proposed physics-informed structure. The effectiveness of the proposed

model is validated through a series of experimental platform tests on different rotor layouts and fault combination

conditions. Several evaluation metrics are proposed to calculate the RFEMNN performance in a hierarchical 10-fold

validation of the experimental data. The average test results show that the comprehensive diagnostics accuracy (on

fault identification and error location aspects) is 94.7%, which is better than the benchmark models in the literature.

Keywords: Rotor finite element model, Physics mimetic layer, Physics mimetic connection, Multi-label and

objective learning, Fault recognition, Fault location.

1. Introduction

Rotating equipment is the foundation of energy production and transmission. Typical rotating machinery operat-

ing conditions, such as wind and gas turbines, are challenging and harsh. Their components are sophisticated and
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highly coupled. Therefore, an unexpected component defect can quickly lead to secondary failures and affect others.

Due to manufacturing and assembly errors, rotor unbalances are almost inevitable and frequently occur in practice

[1]. Besides, under the excitation of unbalance, the accumulation of strain energy from other potential secondary

failures, such as shaft cracks, will snowball until catastrophic consequences. These potential failures can expose the

structure to unpredictable fatigue failure and permanent structural deformation. Much research has been conducted

on this topic with Prognostics and Health Management (PHM) technologies, trying to provide new fault diagnostics

methods supported by innovations from physics-based or data-driven approaches. Tthe existing works based on

Machine learning (ML) provide promising solutions for fault detection and diagnostics (FDD) of rotor unbalance

and shaft cracks. For example, a long short-term memory (LSTM) network is used to detect and classify the rotor

unbalance fault and other structural and electrical failures [2]. A support vector machine (SVM) is combined with

the advanced signal processing methods in [3] for rotor-shaft surface crack classification. Besides, K-nearest neigh-

bors, naive Bayes, artificial neural networks, and deep learning are all standard data-driven methods for rotor fault

diagnostics [4]. However, the performance of these methods strictly depends on the quantity and quality of condi-

tion monitoring data. In addition, the number of faulty signals is generally limited. As an alternative, physics-based

methods (PBM) and even their digital twin models have been primarily developed to detect and localize unbalance

and crack defects [5, 6]. PBM provides credible fault detection and diagnostics by capturing and analyzing param-

eter or system behavior changes [7], which include finite element models (FEM) and other mechanism modeling

methods allowing simulation of normal and fault state responses. However, in practice, the rotor aging and the

rotor operating conditions’ diversity may affect the performance of the PBM. There is an increasing discrepancy be-

tween the actual rotor behavior and its physics model. Also, understanding the fault mechanism may be limited and

insufficient to construct trustworthy degradation models [8]. Moreover, model updates can not inherently correct

modeling errors [9].

Despite a large number of in-depth failure mechanism research for PBM models, their idealized assumptions are

difficult to achieve. Besides, pure ML models can only find correlations or nonlinear mappings of inputs, but not

physical causal relationships (hence they are called “black boxes”), making their decisions hard to understand. There-

fore, Physics-informed machine learning (PIML) is an exciting way to achieve a compromise between physical and

ML models. For leveraging the advantages of different approaches while minimizing their limitations for better

results in PIML for rotor fault diagnostics, we need to overcome the following issues:

1. how to build PIML under biased conditions caused by sparse and noisy data?

2. facing combined failures of rotor unbalance and shaft cracks, how to effectively use rotor responses to detect

and localize the defects?

3. facing the diversity of rotating system structures, how to build an effective PIML model that can be applied

to different rotor layouts?
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The above three issues are intertwined and interrelated. It is essential to interweave data-driven and PBM at the

most fundamental level, seeking commonalities between PBM and ML and exploiting them to build specific PIML

methods [10]. Hence, this paper aims to develop a new PIML method that brings the following contributions:

1. Solutions for mimicking physics in architectural PIML structures.

2. The first work (to our knowledge) on a single PIML model with a composite function dealing with the early

detection, identification, and localization of rotor defects.

3. An Rotor Finite Element Simulation Neural Network (RFEMNN), can be applied to multiple rotor structures

to diagnose unbalance and shaft crack defects.

This paper is structured as follows. In Section 2, relevant works on developing PIML in industrial systems are

discussed and synthesized. Next, we present the novel framework RFEMNN with ML data processing pipelines in

Section 3. Section 4 compares the performance of RFEMNN and typical ML models from the existing literature

through an experimental case study. Finally, conclusions, open challenges, and future research work are presented

in Section 5.

2. Related works

The term “PIML” was formally introduced at the Los Alamos PIML workshops during 2016-2020 [11]. In the field

of PHM, PIML specifically refers to the organic combination of ML and prior knowledge of the physics of failures

related to the system dynamics behaviors. It has become an effective way to alleviate the shortage of training

data, improve model generalization and ensure the physical consistency of the results in different “Informed” ways.

According to the different “Informed” paradigms, “PIML” can be divided into three categories:

1. Physics embedded in the construction of health indicators for establishing the ML input (named PI_input),

2. Physics embedded in the algorithmic structure of ML (named PI_structure),

3. Physics (failure laws and system dynamics behavior) constrainedML objective function design (named PI_loss).

Considering the existing “Informed” frameworks, and to the best of our knowledge, currently, available literature on

the topic does not address all three issues mentioned in Section 1. However, some inspiring works on PIML-based

fault diagnostics and PIML-based surrogate models are reviewed in the following paragraphs and synthetically

presented in Table.1.
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Table 1: Summary of PIML in fault diagnosis
(FD: fault detection, FDT: fault detection and trace, FDR: fault detection and recognition, CM: performance condition monitoring, DNN: deep
neural networks, VAE: variational auto-encoders, CNN: convolution neural networks, DCAE: deep convolutional autoencoders.K-SVD: K-means
singular value decomposition)

Ref. Application Taxonomy Informed way ML model

[12] Gearbox FDT PI_input
Vibration inherent cyclostationary char-

acteristics
Autoencoder

[13]
Electromechanical load

CM
PI_input

Feature space load separability prior eval-

uating
SVM & DNN

[14] Gearbox FDR PI_input
Health-adaptive physics time-scale repre-

sentation embeded input module
CNN

[15] Industrial production FD PI_input
Time-series derivative weighting for per-

turbation values
VAE

[16]
Aircraft composite struc-

ture FDR
PI_input A numerical solutions of Lamb waves CNN

[17,

18]
Crack FDR PI_structure

Defect representation based on NN con-

nection with focused guided wave
Siamse NN

[19, 20,

21]
Crack FDR PI_structure

DNN approximates or encodes the mea-

surements as a solution to the model

DeepONet or

codec NN

[22] Bearing FDR PI_structure
Interpretable weights based envelope

spectrum to highlight fault frequencies

Supervised learn-

ing dichotomy

[23] Turbofan FDR PI_structure
Gas path performance responsed based

model calibration
DNN and VAE

[24]
Off-shore and aero-

structures FDR
PI_structure Physics-informed prior mean function

Gaussian process

regression

[25]
Aircraft wings fatigue

FDT
PI_structure

Walker crack propagation model embeded

recurrent NN cell
RNN

[26, 27,

28, 29,

11]

Grid and Buses FD PI_structure
Physics spatial or spectrum associativity-

based graph convolution
Graph NN

[30] Bearing FDR PI_structure
Physics convolutional kernel for fault fea-

ture similarity comparison
CNN

[31] Drill pipe FD PI_structure
Embedding hydraulic coefficient relation-

ship between two DNNs
DNN
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[32,

33]
Bearing FDR PI_structure Dynamic wavelet informed layer CNN & Resnet

[34, 35,

36]
Structure damage FDR PI_structure

Damage-induced structural changes are

estimated by output changes of NN

Neural differen-

tial equations

[37]
Bridge damage identifica-

tion
PI_loss

Difference between the update of FEM and

NN
NN_FEM parallel

[38]
Bearing & Milling data

FDR
PI_loss Dominant frequency reconfiguration loss DCAE

[39] Bearings FDR PI_loss
Physical threshold model for bearing

health
CNN

[40] High impedance FD PI_loss
Voltage-current elliptical trajectory recon-

struction error
CAE

[19, 41,

42]
Metal plate damage PI_loss

Regular loss term generated by the resid-

uals of the governing equations

K-SVD & Dictio-

nary & NN

[43] Building damage FDR PI_loss Data transfer based on physical similarity Adversarial NN

Table.1 is organized according to the three basic paradigms: “PI_input”, “PI_structure”, and “PI_loss”. Those studies

have seen a proliferation of applications from material and component damages to system faults. However, none

of them deal with the problem of combining fault detection, identification, and localization. Regarding the first

group, the existing “PI_Input” approaches can be seen as an extension of the traditional “feature engineering” or

“simulation-based data augmentation” processes using physics knowledge to assist data processing. They provide an

input space defined by physics knowledge related to faults representation, which is a soft constraint rather than guid-

ing the algorithm to dig deeper into the potential knowledge of the raw data [44]. Their principle remains mapping

features extracted from state monitoring data to degradation phenomena. However, after the physics meaningful

health indicators have been processed by ML, further changes in these indicators and the action mechanisms are

difficult to interpret when applied to the dynamic behavioral representation of PHM case studies [45]. Thus, the

first contribution of our work is further exploring how to enhance the physics consistency and accomplish a higher

level of “physics-informed” in the construction of physics-informed input space.

Considering the “PI_structure” category, some studies extended the idea of “PI_input” to construct additional layers

that allow embedding physics knowledge into ML structures for extracting valuable features [32, 33, 30]. Beyond

feature extraction, PIML can estimate missing physics information [25] and unobserved process variables [23]. More

specifically, some “PI_structure” approaches propose integrating “Hard Constraint Projections (HCP) [46]” with ML.

Accordingly, NN has an HCP layer that employs an activation function or cell structure based on domain knowledge

to ensure that the network’s predictions conform to the equations-based physics constraints. In addition to basic
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MLmodule design, it is possible to embed physics knowledge by designing links between MLmodules. For example,

in the turbofan degradation prediction [47], three cascaded NNs can represent the PDE-based system dynamics. In

general, the serial structure of NN is suitable when the failuremodel is uncertain because it facilitates the adaptability

of each sub-module to extract useful information [48]. In contrast, the parallel structure of NN accomplishes hybrid

estimation with high accuracy but needs better extrapolation capabilities. Therefore, the originality of the approach

proposed in this paper lies in the fact that RFEMNN topologies the rotor finite element structure through customized

layers and the finite element-based fault diagnostic process through customized inter-layer connections.

Regarding the third group, “PI_loss”, the relevant studies add a physics non-consistency item in the loss calculation

when training ML models. This item can be considered as a test of the model output concerning the laws of physics

(such as the rules of thumb for cutter head wear [49] or the reconstruction error of physical components like fault

frequency [38]). Besides, “PI_loss” can be derived by the difference between PBMs output and ML output [39]. To

design “PI_loss”, it is necessary to answer the questions of “which” labels to introduce in the implementation and

“how” to calculate the losses corresponding to these labels. Considering the first term “which”, most existing studies

focus on fault classification issues but do not investigate fault localization problems. In order to localize the damage,

the labels in the dataset can be extended with the corresponding damage locations [50, 51]. Furthermore, the model

can perform multi-task learning for fault type classification and fault localization regression purposes. Multi-task

learning (MTL) is not new for ML. However, for PIML, an interesting question is how to design representative

labels that connect and interact with each other, enabling both regression and classification tasks based on physical

knowledge. Addressing this question brings another originality to this paper. In addition, the second term “How”,

related to calculating the losses corresponding to these labels, will be investigated in the framework proposed in

this paper in the MTL process.

3. Proposed PIML approach

To address the challenges in section 1 and show the innovation points which have been discussed in section 2, we

propose a rotor dynamics finite element model informed deep learning framework for detection, identification, and

localization of shaft crack and unbalance defects. It is called Rotor finite elementmimetic neural network (RFEMNN).

An overview of the implementation of the proposed RFEMNN model is shown in Fig. 1.

In the RFEMNN model, the input includes the raw vibration acceleration signal and physics parameters (i.e., shaft

geometry and components material parameters). These parameters are used in step ③ to build the FEM mimetic

NN structure. The proposed RFEMNN architecture is intended to facilitate the optimal calibration process of the

RFEMNN model thanks to the ML’s nonlinear fitting ability in the supervised multi-task learning-training process.

The framework diagnostics results are fault type, fault location, and predicted temporal vibration features.
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Figure 1: Overview of the proposed RFEMNN architecture

The RFEMNN model of Fig. 1 includes three steps: 1) data pre-processing (presented in Section 3.1), 2) construction

of PIMLmodel (presented in Section 3.2), and 3) multi-task supervised training (presented in Section 3.3). Every step

in the RFEMNNmodel aims to effectively exploit known physical knowledge related to the rotor dynamics problem.

Generally, the rotor dynamics are governed by Eq. (1):

M
..
q

known
+ Sq +D

.
q = F (x, t),

..
q (1)

WhereM , S,D, and F (·) are respectively the mass, the stiffness, the damping and the excitation force of the rotor.

Besides, q is the vibration displacement, while .
q and ..

q are the velocity and the acceleration of the rotor. Among

those parameters, only the ..
q is monitored in this work by vibration signals collected using accelerometers, thus

it is denoted as ..
q

known
. This work assumes that Eq. (1) is obtained based on a finite element discretization of the

problem. The proposed RFEMNN aims to mimic the physical relations between [M,S,D, F ] and q by customizing

layer and layer connections to incorporate the mass finite element matricesM , the stiffness finite element matrices

S. The damping finite element matricesD into the structure of the CNN-LSTM network. Then, RFEMNN is trained

to determine the fault type and the defect position in the MTL process.

3.1. Data pre-processing

The monitoring vibration signals are split into small segments before input to the RFEMNN. The length of those

segments is an important parameter that can affect the model performance. A too-short segment needs to contain

more information, while a too-long segment can lead to excessive computational resource requirements. Therefore,

Algorithm 1 is proposed to split data in different segments with an appropriate length by considering the relations

among the NN input unit number, the rotor shaft element length, and the sampling frequency. Given scale is an

integer with a base number of 2, the whole data splitting algorithm is follows:
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Algorithm 1 Determining the sliding window step in sample splitting.
Input: Frequency sampling (fs), lengths of different considered rotor shafts (Shaft_length_groups), and

sample_length. T_fs is theoretical sampling frequency. N is the number of divided axis segments.
Output: Sliding window step, N
1: Function Data slice
2: T_fs=fs× scale
3: Min_unit length =⌈1/T_fs⌉
4: Sliding window step= (fs− sample_length)/(T_fs/sample_length− 1)
5: N=Shaft_length_groups/Min_unitlength
6: return Sliding_window_step, N

The fault type, location, and rotor behavior features are defined as labels for the multi-task learning (MTL) process.

Figure 2: Relation between the matrices of the structural parameter, fault type, and fault location labels

Firstly, the healthy state(1, 0, 0), unbalance defect(0, 1, 0), shaft crack (0, 0, 1), and the combined defects (of rotor

unbalance and shaft cracks)(0, 1, 1) are respectively represented by a binary one-hot encoding.

Secondly, the defect distance gives the location label (such as x1, x2 in Fig. 2, their units are in meters). Because in

the experimental tests, several rotor structure layouts with different shaft lengths are considered, it is necessary to

normalize the defect distance by the corresponding whole shaft length L. RFEMNN is to design the NN structure

to mimic the relationship between the structural model and the fault location, as shown in Fig. 2. For example, the
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shaft crack mainly affects the change in the bending stiffness and structural damping of the rotating shaft, which

is represented by the nodal value changes in some specific small matrices in S like a constant symmetric matrix su
in Eq. (2). When a failure occurs, su becomes a variable related to rotating speed rpm and time t. Different faults

affect different types of structural matrices. Then at the RFEMNN output, the fault location is the regression of the

structural parameters variation in the M , S, and D mimetic NN layers.
Healthy

Su = EI/(L3)
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, rpm, t)

(2)

Finally, the rotor vibration behavior label is used for guiding the training to keep the response behavior consistent.

This label is the temporal statistic features considered in this paper: the margin factor, impulse factor, peak factor,

wave factor, kurtosis, skewness, RMSE, variance, and mean. Their details can be consulted in the reference [52].

3.2. Building physics informed machine learning structure

This subsection describes how to incorporate FE model into CNN-LSTM seamlessly. Remarkably, the proposed

RFEMNN builds a customized layer to construct the basic operators similar to the elements of the FEM (see Section
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3.2.2 for more details). In addition, the design of RFEMNN layer connections allows driving the data flow similar to

the derivation process of the rotor FEM solution (see Section 3.2.3 for more details).

Figure 3: Step ②-Specific steps for embedding physics knowledge into neural networks

Fig. 3 shows the specific steps for embedding physics knowledge into neural networks structure. It includes:

• the topologically similar structure that can be obtained by customizing the ML module and by replacing the

original ML input-output module partially or completely with the physics model,

• the topologically similar physics derivation process can be obtained by customizing the ML module connec-

tion and by changing the original ML interlayer connections partially or wholly with the physics symbolic

derivation process.

3.2.1. Overview of the proposed RFEMNN model

Fig. 4 presents an overview of the proposed RFEMNN model. Condition monitoring data, i.e., vibration signals, are

fed at the input of the NN model while the rotor information, such as the rotating speed and the whole rotor shaft

length, are used as additional parameters to construct the FEM cell of the NN model. The RFEMNN outputs provide

diagnostics information such as fault types and position as well as the rotor vibration features.
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Figure 4: Schematic diagram of the proposed RFEMNN model

This RFEMNN model consists of two principal parts: similar structure topology (framed by the green dash line)

and similar derivation topology (crafted by the red dash line). The first part aims to capture the essential physics

operators and their mimetic relations. In contrast, the second part seeks to build the FEM solution process-based

relationship between the mimic NN module and the final outputs. The finite element division ratio of the shaft

elements is provided by “CNN layers 1”. Meanwhile, three RFEMNN outputs (i.e., fault positions, fault types, and

vibration features) are the results of three data flows coupled in the proposed model.

The output “Out 3”, which represents rotor vibration features, is defined by a codec-like structure. The difference

between the predicted features obtained at the “Out 3" and the real features extracted from the raw vibration signals

is used as the constraints of the dynamic system behaviors. “Out 3” also contributes to the supervised learning

process of the CNN layers 2, 3, and the CNN-LSTM layer. In detail, “CNN layers 2” uses vibration signals as input to

predict the variation of the parameters in the “Raw mimic FE model part”. It enables the “Raw mimic FE model” to

be further generalized to a more expressive “General mimic FE model”. “General mimic FE model” represents a pool

of potential structural possibilities of the different layouts. Then, its output will be used as the input of the CNN-
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LSTM layer to extract the time features of vibration signals. “General mimic FE model”, “Raw mimic FE model”,

and “Structure changes” are the foundation of the RFEMNN, and they share parameters and information so that the

different tasks are coupled with each other.

“Out 2”, i.e., fault position, is obtained through a regression process. In fitting the system’s dynamic behavior, the

“Variation matrices” will iterate their own parameters to minimize the difference between the “General mimic FE

model” and the real system behavior function. We assume that the “Raw mimic FE model” is the rotor finite element

matrices with no fault conditions and it is created by the rotor FEM. The difference between the raw and the general

mimic FEM represents the degradation of the system structure from no-fault to fault conditions. The location of the

defect is then determined based on variations regression of the structural parameter of different mimetic shaft nodes

in the “Structure changes”. This physics knowledge is embedded into the hidden layer by calculating the “Structure

changes”. The “Structure changes” output is then fed into the “CNN layers 3” to get the position-related coding

features, i.e., “Out 2".

“Out 1", i.e., fault types, is provided at the output of “CNN layers 4" which uses the “Structure changes” output

and the vibration time features, “Out 3", as the input. “Structure changes” denotes changes in the mimetic neural

matrices M , K , D, gives additional physics information to enhance the precision of the conventional diagnostics

results which could be obtained only based on a pure data-driven process (i.e., time features extracted from vibration

signals).

3.2.2. Customizing layers to mimic the finite element model

The specific steps for customizing the design layer “PIML layers’ module” of the mimetic FEM are as follows:

1. Unit generation: Using the output of “CNN layers 1" as the input for “PIML layer", the bending & shear stiffness

matrices and the inertia mimetic NN tensor are generated in the discrete variational form of FE.

2. Unit assembly: Assembly of the stiffness and mass cell tensor into the overall stiffness tensor by using the

corresponding position filling.

The structure of the “PIML layers’ module” is shown in Fig. 5. It consists of the “PIML layer” to topology the basic

elements in FEM. The output of the “PIML layer” are processed by a restock to nonlinear fit the “Raw mimic FE

model”. The “Raw mimic FE model” consists of the mimic mass, stiffness, and damping layers, as shown in Fig. 5.
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Figure 5: Structure of PIML layers

The raw data are processed in the “CNN Layers 1” to generateN neural network cells. They represent the ratio of the

length of each shaft segment to the total shaft length. This ratio is multiplied by the total shaft length and the input

of the subsequent “PIML layer”, i.e., “Pseudo shaft unit length”. Under the Euler-Bernoulli beam assumption, the

structural characteristics of one shaft element are represented by the elementary massM , stiffness S and damping

D parameters. Each shaft element involves two nodes (endpoints of the shaft elements). Each node has 2 degrees

of freedom, lateral displacement ν and in-plane turning angle φ, each degree of freedom is divided into horizontal

and vertical directions by x and y orthogonal decomposition, i.e., νx, νy , φx and φy , as shown in Fig. 6. As a result,

each shaft element can be represented by 3 matrices with a dimension of 8× 8, called “Elementary Mass matrices",

“Elementary Stiffness matrices" and “Elementary damping matrices", as shown in Fig. 5.

In “Elements assembly” step, after generating all the elements, the proposed RFEMNN assembles the mimic finite

element NN cells into mimic structural topology layers, see Fig. 7, according to the shaft unit order n = 0, 1, ..., N .

This process obeys the finite element assembly rule based on the fact that the displacement at the right endpoint

of a shaft element is the same at the left endpoint of the next shaft element. It outputs a finite element NN layer

topology that consists of the total stiffness, the total mass and the total gyroscopic tensor of the entire shaft.
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Figure 6: Generation and assembly of NN cells for simulating finite elements.

Figure 7: Assembling finite element NN layer.

The discs’ mass is added directly to the “Mimic Mass layer" in the disc nodes, and the stiffness of the bearings is

added to the “Mimic Stiffness layer" in the bearing nodes. Since exact values of the disc block mass and bearing

stiffness are not available, these values are initialized by the default values of the simulation and then adjusted by

training.
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3.2.3. Customizing layer connections to mimic FEM solution process

The motions of the rotor in the faulty cases can be expressed by Eq. (3), where q(t)fault denotes the vibration

displacement. Note that in this equation, only ..
q(t) is monitored by vibration signals while the fault excitation ∆f

and the operational excitation F (x, t) remain unknown. However, they can be expressed by ∆m′, ∆s′ and ∆d′,

which is equivalent to the deterioration change in the structural parameters as shown in [53].
(M+∆m) ..q(t)fault +(S+∆ s)q(t)fault +(D+∆d) .q(t)fault=F(x, t)+∆f

(M+∆m′) ..q(t)fault +(S+∆s’)q(t)fault +(D+∆d’) .q(t)fault=0

⇒ [failuretype, failureposition]=h(G(M, D, S), G’(∆m’,∆D’, ∆S’),∆f)

(3)

Figure 8: Structure of CNN-LSTM layer to mimic the FEM solution process

It is not trivial to analytically address a partial differential equation as the one in Eq. (3), by taking into account
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the combination of structural deterioration and fault excitation. But this equation can be approximately solved by

establishing the stacking of multiple hidden layers in the RFEMNN, i.e., by using the NN layers module to capture

the implicit function h(·) presented in Eq. (3). In detail, the function h(·) can be built to mimic the Newmark-β

method [53] that transfers the equations Eq. (1) into implicit recurrence relations, as shown in Fig. 8.

After processing by stacking residual blocks, the mimetic M,S,D tensor in the “General mimic FE model” can be

used to representM +∆m′, S+∆s′, D+∆d′ in Eq. (3), and to calculatemimetic qt as shown in Fig. 8. Then, the

second-order derivatives ..
qt and the recovered time features of the vibration signals can be approximately obtained

by training the LSTM and dense layers.

3.2.4. Selection of physics parameters

Table.2 summarizes the physical parameters involved in the RFEMNN model and presents their determination

method.

Table 2: Physics parameters in RFEMNN.

Symbol Parameter meaning Determination method
ρ Structure density Design parameter
Rd Shaft section outer diameter Field measurement or Design parameter
rd Shaft section inner diameter Field measurement or Design parameter
thi Thickness of the disc Field measurement or Design parameter
sji Support stiffness Estimation or Design parameter
dji Support damping Estimation or Design parameter

The support stiffness and damping come from the coupling of the bearing and the support structure. In practice, it

is difficult to obtain their exact values but can be adjusted during the training by the “variation matrices” presented

in Fig. 4.

3.3. Multi-task supervised training

The proposed model will be trained in a multi-task learning (MTL) process and constrained by a multi-loss function

shown in Eq. (4). In this equation, Lt denotes the loss of the fault type recognition while Lm and Ls are the location

error of the unbalance fault and shaft crack fault. Lv represents the loss concerning the reconstruction of temporal

vibration features. Note that the binary cross entropy is used to metric Lt while the mean square error is used to

metric Lm, Ls, and Lv . αt, αm, αs, and αv are respectively the weights of the corresponding loss.

L = αtLt + αmLm + αsLs + αvLv (4)

The major challenge of this multi-task supervised training comes from the joint optimization process for all tasks

(identification of fault types, fault position, and temporal vibration features). Particularly, the definition of the overall
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Figure 9: Selection of the optimized models in 3 aspects: fault identification, unbalance localization, and crack localization.

loss needs to be carefully balanced to avoid situations where one or more tasks have a dominant influence on the

network weights iteration. To do this, it is necessary to address the following two issues.

1. Different scales of output magnitudes.

Considering different orders of magnitude in the RFEMNN outputs, the loss weights αt, αm, and αs are set

to 100 to balance the influence of varying output magnitudes. They correspond to the fault type and the fault

position. In contrast, the loss weight αv corresponding to the vibration features is set to 1.

2. Conflicts when optimizing the overall and local loss functions.

For diagnostics, Lm and Ls correspond to the accuracy of fault localization. Lt represents the fault identifica-

tion accuracy. Then, Lm, Lt, and Ls are the main factors to decide the diagnostics performance of the trained

model. However, optimizing the total loss function L presented by Eq. (4) does not guarantee that its local

loss functions (Lm, Ls) are simultaneously optimized to the best. So we use L to drive the training process,

save the training results after every three epochs in a model pool, and monitor Lv to decide the stopping time

(e.g., the training process will be stopped if Lv is not improved after 50 epochs). After the training process,

the model pool is thoughtfully investigated to select the best model that has the best performance in all three

aspects: Lm, Ls, and Lt, as shown in Fig. 9.

4. Case study

In this section, the performance of the proposed model is investigated on a real test bench for diagnostics of unbal-

anced faults and shaft cracks. In addition to considering single and combined defects, we validated RFEMNN under

different operating conditions and with different rotor configurations.
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4.1. Description of the case study

4.1.1. Experiment platform

Fig. 10 shows the platform used to test the performance of the proposed RFEMNN model. This PT 500 machinery

diagnostics platform [54] is driven by a three-phase ACmotor with a rated speed of 3000 rpm. The setup accessories

are two rigid long shafts and one rigid short shaft, three supports consisting of two roller bearings and one ball

bearing, two discs with counterweight holes and a flange coupling. These accessories allow constructing different

rotor structure layouts by modifying the position of the supports and discs. Two accelerometers can be placed in

different directions on different supports to collect vibration signals through a data acquisition card NI-DAQ 9174

with a sampling frequency of 4096 Hz.

Figure 10: Schematic diagram of the experimental platform.

4.1.2. Multi-faults experiments

In this work, the unbalance fault is artificially created by adding a 2 g screw in a counterweight hole on the disc, as

shown in Fig. 11. Different unbalance positions are investigated by changing the positions of the screw on the disc.

The number of screws can simulate unbalance degree.

Figure 11: Schematic diagram of the unbalance fault experiment.
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In the shaft-cracking experiments, the flanged shaft consists of a long and a short one. Different crack positions are

simulated by connecting the long or short shaft to the rotor shaft (as in Fig. 12) .

Figure 12: Schematic diagram of the shaft-cracking experiment.

Table.3 summarizes different experiments investigated in this work. We consider four health states of the rotor:

healthy (H), unbalance (U), crack (C), and a combined fault (U&C). The positions of unbalanced defects and shaft

cracks in different experiments are varied along the shaft length. Also, to highlight the robustness of the proposed

model, different rotor structures (with 3 shaft lengths and 4 layouts, see Fig.13) are tested by varying the rotating

speed.

Table 3: Overview of the experimental setup.

Health
state

Shaft
length (m)

Rotor
structure

Rotating speed (rpm) Fault position
(m)

Samples

H_1 0.355 Layout A 1200, 1500, 1800, 2100, 2400, 2700, 3000 - 300
U_1 0.355 Layout A 1200, 1500, 1800, 2100, 2400, 2700, 3000 0.175 300
H_2 0.409 Layout B 1500, 1800 - 40
C_1 0.409 Layout B 1500, 1800 0.120 40
U_2 0.409 Layout B 1500, 1800, 2400 0.290 60
H_3 0.605 Layout C 1200, 1500, 1800 - 60
C_2 0.605 Layout D 1500, 1800, 2400 0.355 60
U_3 0.605 Layout D 1500, 1800, 2400 0.207 60
U_4 0.605 Layout D 1500, 1800, 2400 0.110 60
U_5 0.605 Layout D 1500, 1800, 2400 0.155 60
U&C_1 0.605 Layout C 1200, 1500, 1800, 2100, 2400 C:0.155, U:0.586 60
U&C_2 0.605 Layout C 1200, 1500, 1800, 2100, 2400 C:0.355, U:0.175 60
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Figure 13: Different structure layouts of the test bench.

4.2. Data slicing and labeling

According to the data slicing and labeling methods presented in subsection 3.1, the monitoring vibration signals are

sliced into 39342 samples with a length of 256 points. Note that the labels of fault types, fault location, and temporal

vibration features are assigned for each sample, as illustrated in Tab. 4.

Table 4: Illustration of the data labeling.

Health state Fault type Fault location(%) Temporal vibration fea-
tures

H_1 (1, 0, 0) (0, 0) Margin factor
U_1 (0, 1, 0) (0.175, 0)/0.355×100 Impulse factor
H_2 (1, 0, 0) (0, 0) Peak factor
C_1 (0, 0, 1) (0, 0.120)/0.409×100 Wave factor
U_2 (0, 1, 0) (0.290, 0)/0. 409×100 Kurtosis
H_3 (1, 0, 0) (0, 0) Skewness
C_2 (0, 0, 1) (0, 0.355)/0.605×100 Rmse
U_3 (0, 1, 0) (0.207, 0)/0.605×100 Variance
U_4 (0, 1, 0) (0.110, 0)/0.605×100 Mean
U_5 (0, 1, 0) (0.155, 0)/0.605×100
U&C_1 (0, 1, 1) (0.586, 0.155)/0.605×100
U&C_2 (0, 1, 1) (0.175, 0.55)/0.605×100

4.3. Performance evaluation metrics

The proposed RFEMNN model not only addresses classification issues for identifying fault types but deals also with

regression problems for fault localization. Thus, it is necessary to propose the appropriate metrics that allow us to

evaluate the overall performance of the proposed model on both classification and regression issues (see Table 5).
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Table 5: Evaluation metrics.

A Accuracy
F False alarm
M Missing rate
LU Average positioning accuracy for unbalance faults
LC Average positioning accuracy for shaft crack faults
p Average positioning accuracy for all faults

T
Integrated diagnostic accuracy considering localisation and type iden-
tification

The classification metrics, i.e., accuracy (A), false alarm rate (F ), and missing rate (M ), are calculated by Eq. (5).

In this equation, the values aij and ri are given by Table 6, where the term aij represents the number of samples

attributed to the corresponding category.


F = a12+a13+a14

a11+a12+a13+a14

Ai =
aii∑4

j=1 aij
, j = 1, 2, 3, 4

M = a21+a31+a41∑4
i=1 ri

(5)

Table 6: Confusion matrices.

Diagnostics results
Healthy Unbalance Crack Un & Cra

R
ea
ls

ta
tu
s

Healthy a11 a12 a13 a14

unbalance a21 a22 a23 a24

Crack a31 a32 a33 a34

Un&Cra a41 a42 a43 a44

Sum:
r1 = a11 +

a21+a31+a41

r2 = a12 +

a22+a32+a42

r3 = a13 +

a23+a33+a43

r4 = a14 +

a24+a34+a44

Regarding the performance of defect localization, the mean absolute error is used to evaluate the location error of

the unbalanced defect (LU ) and the shaft cracks (LC ). The average localization accuracy of all defects is denoted

by p. Finally, a metric T defined in Eq. (6), which combines fault localization accuracy and fault type identification

accuracy, is proposed to evaluate the total performance of the proposed model. In this equation, LUpredict
and

LCpredict
are the diagnostics fault location measured as a percentage of the whole shaft length, while LUreal

and

LCreal
are the real fault locations with the same measurement method.
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T = a11+a22+a33+a44∑4
i=1 ri

× p

LU =
LUpredict

−LUreal∑4
i=1 ri

LC =
LCpredict

−LCreal∑4
i=1 ri

p =
(LUpredict

−LUreal
)+(LCpredict

−LCreal
)

2
∑4

i=1 ri

(6)

4.4. Validation results

To verify the effectiveness of the proposed approach, a hierarchical 10-fold cross-validation technique is used to

assess the generalization ability of the RFEMNN model on experimental datasets. As shown in Fig. 14, the dataset

for each experiment is divided into 10 folds, of which 9 folds are selected in turn as the training set and the remaining

folder is the test set. After iterating this process 10 times, the model performance is scored using the average value

of the 10 test results.

Figure 14: Illustration of 10-fold cross-validation.

Results of the proposed model

Using the proposed RFENN framework, the confusion matrices of fault classification results are presented in Table

15. Besides, the result of the fault localization is shown in Fig. 18.
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Figure 15: Average results of fault localization with 10 fold-cross validation on diagnostics fault location

Table 7: Confusion matrices of RFENN fault type identification.

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 1648 167 0 0

unbalance 100 2262 0 0

Crack 0 0 411 0

Im&Cra 0 0 0 1805

Total: 1748 2429 411 1805

From Table.15 and Fig. 18, one can see that:

1. Considering different rotor structures with multiple rotor-speed-varying processes, the diagnostics results

provided by RFEMNN are close to the ground truth on both aspects: fault identification and error location.

Particularly, unbalanced faults, shaft cracks, and combined defects are completely distinguished by the pro-

posed RFEMNN (Table 15).

2. All combined defects are detected and identified correctly.

3. There are still some cases of false and missing alarms. In detail, 167 healthy samples are incorrectly misrepre-

sented as faulty ones while 100 unbalanced faulty samples are misidentified as healthy (Table 15). However,

the false (F ) and missing (M ) rates are small enough. They are 9.2% and 1.56%, respectively.

4. For localization of unbalanced defects and shaft cracks, the results provided by RFEMNN are close to the true

ones (Fig. 18). Only a small number of samples have significant prediction errors.

5. As can be seen from Fig. 18, the results of the shaft crack localization are generally better than the ones of

unbalanced defects. This can be explained by the fact that the shaft cracks have greater effects on vibration

signals than the unbalanced faults, because any rotating system has its initial unbalance.
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4.5. Comparison of the performance of the proposed RFENN with some benchmark models

4.5.1. Description of the benchmark models

To highlight the performance of the proposed RFENN, we re-construct four state-of-the-art models used in diag-

nostics of unbalanced and shaft crack defects. They are: 1) Continuous wavelet transform scalogram assisted CNN

(CWTS) [55], 2) Deep Residual Shrinkage Networks (DRSNs) [56], 3) Deep CNN with support vector machine as

classifier (semi-DCNN) [57], and 4) Spatio-temporal fusion neural network (STFNN) [58]. Among them, STFNN is

a variant of basic CNN-LSTM architecture. DRSNs build models based on residual blocks that process the raw data

directly. Semi-DCNN uses a fusion of two classical architectures, CNN and SVM, and has been shown to outperform

the classical one.

However, the above four models only consider fault identification issues and do not allow localization of the de-

fects. To the best of our knowledge, no existing PHM framework in the literature has been developed for both fault

identification and defect localization on rotating shafts. In general, the fault identification and localization tasks are

performed by two ML algorithms separately, as shown in the papers [59, 60]. Thus, it is necessary to rebuild the

existing models in the literature, which aim to localize the defects, to compare with our proposed model. Three

popular benchmark models are chosen as follows: 1) ANN [60], 2) LSTM [61], and 3) Extreme learning machine

(ELM) [59].

In addition to the above benchmark models, a CNN-LSTM model with the same architecture as our proposed

RFEMNN but without the customized physical layers, called NO_RFEM_NN, was investigated. It is used to prove

the importance of embedding physics knowledge into ML.

4.5.2. Comparison results

Eqs. 5 and 6 are used to evaluate the multi-fault diagnostics metrics of the proposed RFEMNN model and other

benchmark models. The obtained results are shown in Table.8.

Table 8: Comparison of the proposed RFEMNN model with the state-of-the-art models.

Model Input A F M
Location error TLU LC p

CNN[55] Wavelet spectrum 75.21% 60.44% 0.73% - - - -
CNN[55] Raw data 40.59% 0.6% 18.81% - - - -
DRSN[56] Wavelet spectrum 91.48% 2.09% 1.11% - - - -
DRSN[56] Raw data 83.07% 35.81% 2.86% - - - -

Semi-DCNN[57] Raw data 50.80% 57.56% 9.24% - - - -
STFNN[58] Wavelet spectrum 59.35% 58.62% 2.88% - - - -
ANN[60] Wavelet spectrum - - - 24.25% 25.90% 75.63% -
LSTM[61] Raw data - - - 19.84% 23.66% 78.05% -
ELM[59] Raw data - - - 23.87% 24.85% 75.64% -

NO_RFEM_NN Raw data 46.45% 3.74% 22.90 9.89% 17.05% 86.53% 40.19%
RFEMNN Raw data 97.79% 9.20% 1.56% 1.95% 4.37% 96.84% 94.70%
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From Table 8, one can find that:

1. The proposed RFEMNNmodel has the best diagnostics accuracy that reaches 97.79%. Although its false (F ) and

missing alarm (M ) rates are higher than the ones of DRSNS with the input of wavelet spectrum, the proposed

model does not require an additional feature engineering process, i.e., wavelet transformation. Moreover,

when comparing with DRSNS using raw data, the proposed RFEMNN model provides better results.

2. By comparing the performance of the two CNN and DRSN models with different inputs, it can be found

that the wavelet spectrum, which reflects the structural excitation components and the temporal response

information, can improve the diagnostics performance.

3. Although NO_RFEM_NN and CNN provide low false alarm rates, their accuracy metrics and missing alarm

rates are unacceptable. Hence, these false alarm rates cannot prove the performance of NO_RFEM_NN and

CNN, but are only consequences of the low accuracy level. In fact, by considering the confusion matrices of

NO_RFEM_NN and CNN in Appendix 3, one can see that these models misidentify most of the unbalance

faults as healthy.

4. Compared with other existing models, the performance of DRSN is better under the same input conditions.

Therefore, the appropriate network architecture design has a decisive impact on diagnostics performance.

5. Regarding the defect localization aspects, the proposed RFEMNN model provides the best results compared

to all existing models. There is no band bias in the overall predicted data in the prediction results as shown

in Fig. 19 and figures in Appendix 5. Therefore, it gives the best value of the total diagnostics performance

metric (T ) reaching 94.7%.

6. Without physics-embedded layers, i.e., when removing the custom layers and layer connections used to rep-

resent the rotor finite element model, the diagnostics performance of NO_RFEM_NNN falls drastically down.

The overall diagnostics performance falls to 42.43% of the original. This highlights the importance of physics

knowledge in RFEMNN. The PI structure is an essential support for the RFEMNN excellent performance.

5. Conclusion and future works

This paper has developed a new rotor finite element mimetic CNN-LSTMmodel for rotor unbalance and shaft crack

detection, identification and localization. It is called RFEMNN, which allows investigating of different rotor layouts

under varying rotor-speed processes. The proposed model simulates the fault diagnosis process of a rotor-based

finite element model in multi-task learning by means of a customized PIML layer and its connections. A series of

experimental tests verify the effectiveness of RFEMNN. Several metrics have been proposed to assess the accuracy

of RFEMNN on multi-fault classification and localization issues. In detail, the scores are evaluated by using a hi-

25



erarchical 10-fold cross-validation on experimental data. The 10-fold averaged experimental results show that the

accuracy of RFEMNN is at 97.79%, the false alarm rate is 9.20%, the fault-detection-missing rate is 1.56%, and the

localization accuracy is 96.84%. Then, the total diagnostics performance reaches 94.70%.

The comparison results with existing ML models (one- or multi-dimension CNN, spatiotemporal fusion neural net-

work, semi-DCNN, and deep Residual Shrinkage Networks in state-of-the-art) have shown the superiority of the

proposed model. The RFEMNN can exceed the fault recognition performance of state-of-the-art without doing sig-

nal preprocessing.

Besides proving the effectiveness of the proposed RFEMNN model for diagnostics of rotor unbalances and shaft

cracks, this study also opens up numerous promising research directions in the future:

1. The structural topology and the data flow topology of the FEM derivation process within a neural network

architecture can be further explored. The combination of Neural Architecture Search methods with physical

objectives should be investigated to optimize the RFEMNN structure.

2. Regarding the multi-task learning process, since the outputs of different tasks are coupled with each other, a

new effective design of the multi-objective loss balance task should be developed to facilitate model conver-

gence and thus reduce computational time.

3. The initialization of the model parameters and hyperparameters could be deeply studied and optimized under

the guidance of physics knowledge. In addition, studies on the adaptation of the model in a broader sense and

for a more comprehensive range of rotor structures are welcome. Thus, the proposed RFEMNN will benefit

from the implementation of numerous industrial applications with different rotor configurations and more

complex fault types.
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Appendix: Diagnostics results for different benchmark models

Confusion matrices for fault identification results

Convolutional neural network
Table 9: Confusion matrices of CNN (raw data as input) for fault type identification[55]

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 1783 11 0 21

unbalance 1199 70 0 1094

Crack 4 12 0 1789

Im&Cra 0 54 0 1751

Total: 765 2665 241 2723

Table 10: Confusion matrices of CWSCNN for fault type identification[55]

Diagnostics results
Healthy unbalance Crack Im&Cra
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R
ea
ls

ta
tu
s

Healthy 718 1097 0 0

unbalance 38 1452 0 873

Crack 9 62 241 99

Im&Cra 0 54 0 1751

Total: 765 2665 241 2723

Deep residual shrinkage networks

Table 11: Confusion matrices of DRSNs (wavelet spectrum as input) for fault type identification[56]

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 1777 38 0 0

unbalance 71 2035 52 205

Crack 0 0 400 11

Im&Cra 0 80 1 1724

Total: 1848 2153 453 1940

Table 12: Confusion matrices of DRSNs (raw data as input) for fault type identification[56]

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 1156 650 4 5

unbalance 170 1917 37 239

Crack 13 5 347 46

Im&Cra 0 253 12 1540

Total: 1339 2825 400 1830

Convolutional neural network with SVM as the final classifier

Table 13: Fault type identification confusion matrices of CNN-SVM[57]

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 893 572 9 341

unbalance 418 1079 38 828
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Crack 83 148 48 132

Im&Cra 90 205 1 1509

Total: 1482 2004 96 2810

Spatio-temporal fusion neural network

Table 14: Fault type identification confusion matrices of STFNN[58]

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 751 346 0 718

unbalance 184 913 0 1266

Crack 0 0 0 411

Im&Cra 0 0 0 1805

Total: 935 1259 0 4546

No-RFE NN (without physical knowledge)

Table 15: Fault type identification confusion matrices of STFNN

Diagnostics results
Healthy unbalance Crack Im&Cra

R
ea
ls

ta
tu
s

Healthy 1747 64 1 3

unbalance 1414 307 6 636

Crack 50 106 74 181

Im&Cra 2 57 0 1746

Total: 3213 534 81 2566

Fault location results

Artificial Neural Networks

Figure 16: Average results of ANN based fault localization with 10 fold-cross validation[60]

31



Long and short-term memory neural networks

Figure 17: Average results of LSTM based fault localization with 10 fold-cross validation[61]

Extreme Learning Machine

Figure 18: Average results of ELM based fault localization with 10 fold-cross validation[59]

NO_FEM_NN

Figure 19: Average results of NO_FEM_NN based fault localization with 10 fold-cross validation
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