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Abstract 

This paper presents a method for constructing optimal design of experiments (DoE) intended for building 

surrogate models using dimensionless (or non-dimensional) variables. In order to increase the fidelity of 

the model obtained by regression, the DoE needs to optimally cover the dimensionless space. However, in 

order to generate the data for the regression, one still needs a DoE for the physical variables, in order to 

carry out the simulations. Thus, there exist two spaces, each one needing a DoE. Since the dimensionless 

space is always smaller than the physical one, the challenge for building a DoE is that the relation 

between the two spaces is not bijective. Moreover, each space usually has its own domain constraints, 

which renders them not-surjective. This means that it is impossible to design the DoE in one space and 

then automatically generate the corresponding DoE in the other space while satisfying the constraints 

from both spaces. The solution proposed in the paper transforms the computation of the DoE into an 

optimization problem formulated in terms of a space-filling criterion (maximizing the minimum distance 

between neighboring points). An approach is proposed for efficiently solving this optimization problem in 

a two steps procedure. The method is particularly well suited for building surrogates in terms of 

dimensionless variables spanning several orders of magnitude (e.g. power laws). The paper also proposes 

some variations of the method; one when more control is needed on the number of levels on each non-

dimensional variable and another one when a good distribution of the DoE is desired in the logarithmic 

scale. The DoE construction method is illustrated on three case studies. A purely numerical case illustrates 

each step of the method and two other, mechanical and thermal, case studies illustrate the results in 

different configurations and different practical aspects. 
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1 Introduction to surrogate models and dimensional 
analysis 

With the continuous increase in the processing power and the diversification of computer simulation 

software, ranging from finite element to Multiphysics system simulation, the systems being simulated 

today are intensively growing in complexity. Although in the past the aim of the simulation was the 

verification of already designed systems and components, today it is used at almost every level of system 

design [1] such as performance analysis [2], preliminary design [3], real time simulation [4], etc. However, 

although for these tasks the simulation conveniently substitutes the traditional physical experiments, for 



complex systems it may be still very demanding in time and computing effort. Usually the space to be 

covered by simulations is very wide (due to many varying parameters) or the time to run a single 

simulation is very long (e.g. CFD). Accordingly, surrogate models are often computed based on a limited 

number of numerical experiments with different input parameters. The design of experiments (DoE) thus 

still remains very important in the age of computer experiments [5]. 

When dealing with complex systems or components, metamodeling is often used for their macroscopic 

modeling. In engineering, metamodels, also called surrogate models, are mathematical relations aimed to 

substitute heavy detailed models such as finite elements models or complex lumped parameter models 

that usually involve many differential-algebraic equations (DAE). Their purpose is to replace 

computationally intensive models by approximate, but very light models. This is extremely useful 

especially during the tasks that require repeated simulations with different sets of parameters, e.g. 

optimization routines. By contrast to model reduction techniques which seek to obtain a light model by 

mathematical manipulation of the detailed physical equations [6]-[8], metamodeling is adjusting the 

parameters of the light model so that its response fits best to the simulation results obtained out of the 

detailed model [9] - [12]. Some common surrogate models are polynomial response surfaces, radial basis 

functions, kriging, artificial neural networks, etc. The inputs of these models are called the design 

parameters and the output(s) – the variable(s) of interest that depend on the input parameter(s). 

In order to reduce the number of input variables of surrogate models, several researchers proposed to 

use the Vaschy-Buckingham 𝜋 theorem [13] - [18] in order to construct the surrogate model in terms of 

non-dimensional (or dimensionless) parameters 𝜋 characterizing the system. This theorem states that a 

physical relation involving 𝑛 relevant physical variables, 𝑥1, 𝑥2, … , 𝑥𝑛, can be rewritten in terms of a set 

of 𝑚 = 𝑛 − 𝑘 dimensionless variables (also called dimensionless numbers) 𝜋1, 𝜋2, . . . , 𝜋𝑚 constructed 

from the original physical variables [19] - [21]. Here 𝑘 is the number of independent physical units and 𝜋𝑖 

are groupings of input variables 𝑥𝑖 at particular powers 𝑎𝑖: 𝜋𝑖 = 𝑥1
𝑎1𝑥2

𝑎2 … 𝑥𝑛
𝑎𝑛. Consequently, the 

dimensionless numbers don’t have physical units. Thus, besides reducing the size of the model, this 

strategy may enhance the robustness of the metamodel (with fewer inputs it may be easier to obtain a 

more robust model), reduces the size of the required DoE for metamodel construction, and also adds 

physical insight to the metamodel. The physical domains that enjoyed the most the use of dimensionless 

numbers are probably fluid dynamics and thermal transfer, although they are also used in many other 

physical domains but to a lesser extent. They gave birth to some well-known dimensionless numbers such 

as Reynolds number, Rayleigh number, Nusselt number, Prandtl number, etc. 

So far, some of the types of metamodels used in conjunction with dimensionless variables are 

polynomials [13], [18], sum of power laws [22] and variable power laws [23], [24]. Nevertheless, in many 

engineering domains (e.g. thermal and aircraft engineering) [25], chapter 5 in [27], one of the most used 

model shape for semi-empirical laws is the product of power laws. Scaling laws, which are often used in 

engineering [15], [28], are also examples of power laws. Therefore, in this case the regression of the 

numerical parameters of the model is carried out in logarithmic scale because it becomes linear. Another 

reason to perform the regression in logarithmic domain is that the dimensionless numbers often vary by 

several orders of magnitude for usual engineering applications. We will thus also consider the special case 

of DoEs in logarithmic scale in the context of dimensionless variables. 

1.1 The challenge of Design of Experiments with design space 
transformation 

Constructing DoE plans for a model expressed in terms of dimensionless numbers appears to be more 

challenging than for a model expressed in terms of physical variables. Since the metamodel is expressed in 

terms of dimensionless variables, 𝜋𝑖, instead of the physical ones, 𝑥𝑖, for its construction we need a DoE 



on dimensionless variables and not on physical ones. In order to increase the accuracy of the metamodel, 

the DoE in the dimensionless space should satisfy some distribution properties (e.g. space-filling). In this 

case, a straightforward solution would be to use a classical DoE owing such distribution properties directly 

on the dimensionless variables. Unfortunately, such a DoE would be useless because the numerical 

resolution by employing directly dimensionless variables is possible only in a limited number of industrial 

simulation tools. Numerical simulations of physical systems are almost always employing the physical 

variables. This means that one should construct a DoE in the dimensionless space, and then calculate the 

corresponding DoE for the physical variables in order to simulate the system. However, this cannot be 

implemented for two reasons. One difficulty lies in the fact that there are less dimensionless variables 

than physical variables. Therefor for a given DoE in the dimensionless space the DoE in the physical space 

is not unique. Although this may be considered as a nonissue (one can just pick a solution among the 

plethora of solutions), when considering domain limitations (constraints) it is very easy to get unfeasible 

solutions. 

In order to illustrate the challenge, let’s consider the problem of finding the bending stiffness of a 

rectangular beam for topologies where the geometrical assumptions of beam theory are not satisfied. 

Note that this problem has a trivial analytical solution but we will use it here only to illustrate the 

challenges involved. The stiffness of the beam, 𝐾 (unit [𝑁/𝑚]), depends on four physical variables: its 

geometrical dimensions, length – 𝐿 (unit [𝑚]), width – 𝑊 (unit [𝑚]) and high – 𝐻 (unit [𝑚]) and the 

Young’s modulus of the material 𝐸 (unit [𝑁/𝑚2]). Consider that we are interested in finding the relation 

that approximates the stiffness of a beam whose dimensions vary within a given domain, i.e. 𝐿 ∈

[𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥], 𝑊 ∈ [𝑊𝑚𝑖𝑛, 𝑊𝑚𝑎𝑥] and 𝐻 ∈ [𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥]. Additionally, we also look only at beams with 

the aspect ratios varying within a given domain, i.e. 
𝐻

𝑊
∈ [𝑚𝑖𝑛, 𝑚𝑎𝑥] and similarly for 

𝐿

𝑊
. According to the 

Vaschy-Buckingham theorem, the problem can be expressed in dimensionless space as 𝜋0 = 𝑓(𝜋1, 𝜋2) 

with 𝜋0 =
𝐾

𝐸𝑊
, 𝜋1 =

𝐻

𝑊
 and 𝜋2 =

𝐿

𝑊
. Thus, in order to find the function 𝑓 one should construct a DoE for 

the dimensionless variables 𝜋1 and 𝜋2. However, in order to gather the data on which the regression will 

be carried out, a DoE for the physical variables 𝐻, 𝑊 and 𝐿 is also necessary. The straightforward solution 

would be to design the DoE for the dimensionless variables 𝜋1 and 𝜋2 which are bounded by their 

min/max limits, and then compute the corresponding DoE in the physical space, defined by the variables 

𝐻, 𝑊 and 𝐿, for the simulation needs. If the function 𝑓 is a power law, which is often the case when we 

need to cover multiple orders of magnitude of the dimensionless parameters, then the considered DoE 

should be constructed in logarithmic scale. This enables to compute the parameters of the model by 

linear regression. By transforming the dimensionless numbers in the logarithmic scale we get: 

log 𝜋1 = log 𝐻 − log 𝑊 (1) 

and  

log 𝜋2 = log 𝐿 − log 𝑊 (2) 

In order to illustrate the problem of unfeasible solutions that can be obtained by taking this approach, let 

us propagate the constraints of the physical domain in the dimensionless space. First, the min/max limits 

for 𝜋1 due to the min/max limits of the physical variables can be obtained from eq. (1) as: 

min log 𝜋1 = log 𝐻𝑚𝑖𝑛 − log 𝑊𝑚𝑎𝑥 (3a) 

max log 𝜋1 = log 𝐻𝑚𝑎𝑥 − log 𝑊𝑚𝑖𝑛 (3b) 

The same goes for the limits of 𝜋2: 



min log 𝜋2 = log 𝐿𝑚𝑖𝑛 − log 𝑊𝑚𝑎𝑥 (4a) 

max log 𝜋2 = log 𝐿𝑚𝑎𝑥 − log 𝑊𝑚𝑖𝑛 (4b) 

Additionally, since 𝜋1 and 𝜋2 are coupled by the width of the beam, 𝑊, there also may be some couplings 

between the limits of 𝜋1 and 𝜋2. This coupling can be found by subtracting eq. (1) from eq. (2)which 

enables to determine the upper and lower frontiers of log 𝜋2 in function of 𝜋1as: 

log 𝜋2 = log 𝜋1 + log 𝐿𝑚𝑎𝑥 − log 𝐻𝑚𝑖𝑛 = 𝑓(𝜋1) (5a) 

log 𝜋2 = log 𝜋1 + log 𝐿𝑚𝑖𝑛 − log 𝐻𝑚𝑎𝑥 = 𝑓(𝜋1) (5b) 

Note that the frontiers of 𝜋2 is not constant when 𝜋1 varies within its own min/max limits. The same 

holds true for the dimensionless variable 𝜋1. The feasible domain in the dimensionless space is thus the 

intersection of the domain bounded by eqs. (3a) – (5b) with the one bounded by the min-max limits of 

dimensionless numbers 𝜋1 and 𝜋2, as shown in Figure 1. Therefore, designing a DoE in the dimensionless 

space bounded only by min-max constraints on 𝜋 variables may give some points that do not satisfy the 

bounds of the physical variables 𝐿, 𝐻 and 𝑊. This may lead to nonrealistic physical configurations, or to 

difficulties in simulation, which may provide unreliable data for the regression process.  

 

FIGURE 1. PROPAGATION OF THE CONSTRAINTS FROM PHYSICAL TO THE DIMENSIONLESS SPACE AND 

VICE-VERSA. THE NUMBERS IN PARENTHESES REPRESENT THE REFERENCE OF EQUATION DESCRIBING 

THE LINE 

The other way around is also conceivable, i.e. design a DoE in the physical domain and then compute the 

one corresponding to the dimensionless space. Since there are less dimensionless variables then physical 

variables, converting the DoE form the physical space to the dimensionless one is straightforward (there is 

a unique solution). However, designing a DoE in the physical domain bounded only by the min-max limits 

of the physical variables will bring the same problem as in the previous case, i.e. violation of the 

constraints in the dimensionless space, as illustrated in Figure 1. Additionally, the corresponding DoE in 

the dimensionless space will not have the desired distribution properties in order to achieve a good 

estimation of the function 𝑓(𝜋1, 𝜋2). 

The third possibility would be to design the DoE in the dimensionless space by considering the min-max 

bounds on the 𝜋𝑖 variables and the constraints propagated from the bounds of the physical variables, like 

the eqs. (3a) – (5b). However, when the number of physical and dimensionless variables is large, 

propagating the constraints analytically from one domain to the other may be time consuming or even 

prohibitive. Moreover, in the general case, the physical variables can be bounded by nonlinear constraints 

which can be impossible to analytically propagate to the dimensionless space. And on the top of that, the 

solution uniqueness problem of the DoE in the physical space is not solved. 
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1.2 Aim and organization of the paper 
Many methods are currently available for constructing DoE in a physical design space with different 

distribution properties, as will be reviewed in the next section. However, to the best of our knowledge, 

there is no available approach that computes a DoE for two spaces, physical and dimensionless, by 

considering domain constraints in both spaces. Therefore this paper aims to propose a solution to this 

problem, which may occur in today’s engineering needs. 

The rest of this article is organized as following. In section 2 we give an overview of some of the common 

approaches for constructing design of experiments. In section 3 we first provide the general formulation 

for constructing optimal space-filling DoEs in non-dimensional space. Then we provide an efficient 

approach for solving the optimization problem involved in this formulation. We also provide declinations 

of the proposed method for cases when the user needs to specify the number of levels for each non-

dimensional variable and for cases where the DoE needs to be constructed in logarithmic scale. In section 

4 we provide three application case studies for the proposed approach. Finally we provide concluding 

remarks in section 5. 

2 Overview of Design of Experiments 
Many techniques are available for constructing a design of experiments. We will give here a brief 

overview of some commonly used techniques, then focus on space-filling design which is of particular 

interest for the present work. 

The full factorial design is among the most common and intuitive techniques for building a design of 

experiments. It consists in dividing each variable (or factor) into n levels, then constructing a point for 

every possible combination of the variable’s levels. The result can be seen as a regular grid (a hypercube 

beyond three factors) over the design domain. One of the advantages of this technique is that it samples 

all the corners of the design domain. The main drawback of full factorial designs in this situation is that 

the feasible domain of the study most often is not a hypercube, because of the constraints from physical 

domain, as illustrated in Figure 1. 

Fractional factorial designs have been developed to address the curse of dimensionality associated with 

full factorial designs, by considering only a fraction (or subset) of the full factorial design. Accordingly they 

lead to smaller sizes of the experimental design and are quite efficient for fitting first order polynomial 

response surface approximation to the data. However they are problematic when higher order 

polynomials are being sought including interaction terms.  

To address the construction of experimental designs for higher order polynomials, central composite 

designs (CCD) [29] and Box-Behnken designs [30] have been developed. Central composite design consist 

in fractional factorial designs to which central – facial points have been added to allow better estimation 

of the interaction effects. Box-Behnken designs are based on incomplete block designs. These types of 

DoE are better suited for experimental estimations in order to deal with the measurement noise and 

repeatability. Since for computer experiments the noise and repeatability are not an issue, optimal 

designs have been developed in this context. These designs typically optimize the statistical inference 

possibility given a certain model structure (for example a linear or polynomial model) or optimal space 

distribution to cover at best the design space [31]. For a detailed review of “X”-optimality criteria for 

polynomial response surfaces the reader is referred to [32]. 

In the context of fitting a surrogate model in terms of dimensionless parameters we are mainly interested 

in having good space-filling properties and being able to control the density of points in each variable. 

Accordingly we will briefly review some classical techniques for space-filling designs.  



The space filling design problem has been well known and extensively studied in the applied mathematics 

community under the name sphere packing problem [33], [34]. It can be formulated as follows. Let us 

consider 𝑑𝑖𝑗 the Euclidien distance between any two points 𝑥𝑖 and 𝑥𝑗:  

𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑥𝑖‖
2

      ∀ 𝑖, 𝑗 ∈ {1, . . , 𝑁} (6) 

The circle packing problem consists in maximizing the minimum distance between any two points as 

shown in eq. (7). Note that this is a non-convex optimization problem. 

Maximize
𝑥

 min
𝑖<𝑗

 [𝑑𝑖𝑗] 

Subject to 𝑥𝑘 < 𝑥𝑘
𝑖 < 𝑥𝑘 ∀𝑖 ∈ {1, . . , 𝑁}, ∀𝑘 ∈ {1, . . , 𝑛}

 (7) 

Alternative formulations have been also considered in order to simplify the complexity of the underlying 

optimization problem. Morris and Mitchel [35] for example proposed to minimize the 𝛷𝑝 function defined 

in eq. (8) where 𝑝 is a positive integer. For large 𝑝 the 𝛷𝑝 criterion is equivalent to the max min criterion 

defined in eq. (7). 

𝛷𝑝 = (∑ ∑ 𝑑𝑖𝑗
−𝑝

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

)

1/𝑝

 (8) 

Another formulation is based on minimizing the Shannon-entropy of the points in the experimental design 

as proposed by Shewy and Wynn [36]. The criterion can be formulated as in [37]: 

Minimize log 𝑅 (9) 

with: 

𝑅𝑖𝑗 = 𝑒𝑥𝑝 (∑ 𝜃𝑖𝑘(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)

2
𝑛

𝑘=1

) 
(10) 

where 𝜃𝑖𝑘 are the correlation coefficients and 𝑅 forms the correlation matrix between the points of the 

experimental design. 

Audze and Eglais [38] proposed a potential energy formulation for obtaining space filling designs based on 

a physical analogy. They consider a system of points with unit mass exerting a repulsive force on each 

other. The points will reach equilibrium when their potential energy will be minimum. The potential 

energy can then be expressed as: 

𝑈 = ∑ ∑
1

𝑑𝑖𝑗
2

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (11) 

These different formulations can be applied to obtain space-filling designs. A further refinement consists 

in imposing a user provided number of levels for each variable. A popular approach for achieving both 

space-filling properties and a controlled number of levels is the optimal Latin hypercube design [39], [40]. 

Some of the reasons for its popularity are discussed in [41]. Latin hypercube design consists in defining a 

grid over the design space with 𝑁 levels over each variable. A random sampling is carried out such as to 

obtain only one point per level for each variable. Due to the random nature of the sampling, Latin 

hypercube designs are not necessarily space-filling but they can be easily made so by adding an 

optimization step according to one of the previous space-filling criterion. This leads to so called optimal 



Latin hypercube designs, which can be constructed either through optimization [42], [43] or geometric 

construction [44]. 

In the context of constructing a DoE in terms of non-dimensional variables there is an additional issue that 

needs to be handled: constrained design domains. Unlike in traditional DoE where only lower and upper 

bounds are typically considered for each variable, the constraints in the dimensionless space may be more 

complex.  

Compared to the literature on general experimental design, relatively few works investigated constrained 

design of experiments. Petelet et al. [45] proposes to achieve a constrained DoE through permutations on 

initial Latin hypercube designs, but the approach does not guarantee space-fillingness. Fuerle and Sienz 

[46] propose a constrained optimization formulation which they solve by genetic algorithms. Hofwing and 

Strömberg [47] propose a hybrid formulation solved by a combination of genetic algorithm and sequential 

linear programming. Mysakova et al. [48] propose for convex constraints a formulation based on 

Delaunay triangulation. These approaches for constrained DoE all handle a single design space. For 

constructing dimensionless surrogate models two design spaces are needed: the dimensional (or physical) 

design space and the dimensionless one and constraints can be present in each of these design spaces. 

Accordingly, none of the previous approaches are directly applicable to constructing a DoE for 

dimensionless spaces and keeping the correspondence between dimensional and dimensionless points of 

the DoE. The next sections provide a methodology for constructing such DoE that are also space-filling 

and that allow control on the density of points in each variable. 

3 The proposed method 
This section presents the proposed method to construct a DoE for the dimensionless and physical spaces. 

As illustrated in section 1.1, the main drawbacks of classical methods for the DoE construction in the 

dimensionless space and the corresponding DoE in the physical space are: 

 a classical DoE constructed in the physical space may lead to a bad distribution of the 
corresponding DoE in the dimensionless space; 

 it may be difficult to propagate the constraints from the physical space to the dimensionless 
space; 

 a DoE in the dimensionless space has a non-unique solution for the corresponding physical space.  

In order to overcome these drawbacks we propose to design the DoE in the physical space but its 

construction should be based on the optimization of a distribution criterion in the corresponding 

dimensionless space. Thus, the problem is defined as an optimization problem where the manipulated 

variables are the physical variables and the cost function is the distribution criterion of the corresponding 

DoE in the dimensionless space. Constraints on both the physical and non-dimensional variables are 

considered in the optimization formulation. In this way it is not necessary to propagate the constraints 

from the physical space to the dimensionless one and there is no problem with the non-uniqueness of the 

DoE in the physical space. The desired distribution criterion for the DoE was chosen to be the optimal 

space filling criterion. The considered cost function to be maximized is thus the minimal distance between 

any two points. The mathematical formulation of this problem is described in the following section. 

3.1 General optimization problem 
Let us consider a set of 𝑛 physical variables, denoted 𝑥𝑖 , ∀𝑖 ∈ {1, … , 𝑛}, that form 𝑚 dimensionless 

variables, noted 𝜋𝑗 , ∀𝑗 ∈ {1, … , 𝑚}. Note that according to the Vaschy-Buckingham theorem  𝑚 < 𝑛 . The 

relations between the physical and dimensionless variables are: 



𝜋𝑗 = 𝑓𝑗(𝑥1, … , 𝑥𝑛), ∀𝑗 ∈ {1, … , 𝑚} (12) 

This means that the physical space has 𝑛 variables whereas the dimensionless space has 𝑚 variables. 

Designing a DoE containing 𝑁 experiments is equivalent to placing 𝑁 points 𝑃 in both spaces, each point 

having the coordinates 𝑃𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑛
𝑘), ∀𝑘 ∈ {1, … , 𝑁} in the physical space and 

𝑃𝑘 = (𝜋1
𝑘, 𝜋2

𝑘 , … , 𝜋𝑚
𝑘 ), ∀𝑘 ∈ {1, … , 𝑁} in the corresponding dimensionless space. Note that here 𝑘 is an 

index and not a power coefficient. The physical and dimensionless variables may be bounded by upper 

and lower bounds: 

 
𝑥𝑖,min ≤ 𝑥𝑖 ≤ 𝑥𝑖,max, ∀𝑖 ∈ {1, … , 𝑛}

𝜋𝑗,min ≤ 𝜋𝑗 ≤ 𝜋𝑗,max, ∀𝑗 ∈ {1, … , 𝑚}
 (13) 

In order to ensure the simulation of only realistic configurations, the physical variables may have 

additional 𝑞 inequality constraints, expressed as: 

𝑔𝑖(𝑥1, … , 𝑥𝑛) ≤ 0,   ∀𝑖 ∈ {1, … , 𝑞} (14) 

Note that if on top of the bounds on the non-dimensional variables (eq. (13)) there are also non-linear 

constraints, these can always be transformed into non-linear constraints in terms of the physical 

variables. The formulation can thus handle non-linear constraints in terms of both dimensional and non-

dimensional variables.  

The distance 𝑑 between two points 𝑃𝑖 and 𝑃𝑗 of the dimensionless space is defined as the second norm 

(Euclidian distance): 

𝑑𝑖𝑗 = ‖𝑃𝑖 − 𝑃𝑗‖
2

, ∀𝑖, 𝑗 ∈ {1, . . , 𝑁}, 𝑖 < 𝑗 (15) 

with 𝑃𝑘, 𝑘 ∈ (1, … , 𝑁) being vectors of length 𝑚 where the elements are the coordinates of the points in 

the dimensionless space 𝑃𝑘 = (𝜋1
𝑘, … , 𝜋𝑚

𝑘 ). These points can be also represented in terms of physical 

variables, by introducing eq. (12) in eq. (15) which gives: 

𝑃𝑘 = (𝑓1(𝑥1
𝑘 , … , 𝑥𝑛

𝑘), … , 𝑓𝑚(𝑥1
𝑘 , … , 𝑥𝑛

𝑘)) (16) 

Considering the above notations, the DoE can be computed by solving an optimization problem 

formulated as: 

Maximize
𝑥1

1,…,𝑥1
𝑁,…,𝑥𝑛

1 ,…,𝑥𝑛
𝑁

min  [𝑑𝑖𝑗] ∀𝑖, 𝑗 ∈ {1, . . , 𝑁}, 𝑖 < 𝑗 

Subject to 𝑥𝑖,min ≤ 𝑥𝑖
𝑘 ≤ 𝑥𝑖,max ∀𝑖 ∈ {1, . . , 𝑛}, ∀𝑘 ∈ {1, … , 𝑁}

𝜋𝑖,min ≤ 𝑓𝑖(𝑥1
𝑘, … , 𝑥𝑛

𝑘) ≤ 𝜋𝑖,max ∀𝑖 ∈ {1, . . , 𝑚}, ∀𝑘 ∈ {1, … , 𝑁}

𝑔𝑖(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) ≤ 0 ∀𝑖 ∈ {1, . . , 𝑞}, ∀𝑘 ∈ {1, … , 𝑁}

 (17) 

with 𝑑𝑖𝑗 defined as in eq. (15) where the points 𝑃𝑘 are defined in eq. (16). In order to solve this 

optimization problem with multiple cost functions, it can be transformed into an equivalent problem with 

a single cost function as: 



Maximize
𝑧,𝑥1

1,…,𝑥1
𝑁,…,𝑥𝑛

1 ,…,𝑥𝑛
𝑁

𝑧

Subject to 𝑧 ≤ 𝑑𝑖𝑗 ∀𝑖, 𝑗 ∈ {1, . . , 𝑁}, 𝑖 < 𝑗

𝑥𝑖,min ≤ 𝑥𝑖
𝑘 ≤ 𝑥𝑖,max ∀𝑖 ∈ {1, . . , 𝑛}, ∀𝑘 ∈ {1, … , 𝑁}

𝜋𝑖,min ≤ 𝑓𝑖(𝑥1
𝑘, … , 𝑥𝑛

𝑘) ≤ 𝜋𝑖,max ∀𝑖 ∈ {1, . . , 𝑚}, ∀𝑘 ∈ {1, … , 𝑁}

𝑔𝑖(𝑥1
𝑘, … , 𝑥𝑛

𝑘) ≤ 0 ∀𝑖 ∈ {1, . . , 𝑞}, ∀𝑘 ∈ {1, … , 𝑁}

 (18) 

By discarding the variable 𝑧 from the solution of the optimization problem (18) one obtains the DoE for 

the physical space and using the transformations from eq. (12) the corresponding DoE in the 

dimensionless space. 

In this paper we use for optimization the max-min approach introduced in eq. (7) and implemented in 

Matlab according to [49]. On all our test problems this implementation was very efficient. For problems 

for which this implementation appears to be too expensive, the optimization can always be reformulated 

in terms of the cost function of eq. (8).  

Although the cost function is linear, the constraints 𝑧 ≤ 𝑑𝑖𝑗 are nonconvex. This implies that even if the 

functions 𝑓𝑖 and 𝑔𝑖 are convex, the entire optimization problem is not convex. Therefore, in order to solve 

the optimization problem (18) a global optimization algorithm is indicated. When addressing nonconvex 

optimization problems, the initial guess of the solution is of particular importance in order to increase the 

chance of finding the global optimum. Therefore in the following section we propose a method to rapidly 

generate an initial guess. 

3.2 Computation of the initial guess of the solution 
If convex optimization algorithms are used in nonconvex optimization problems, an initial guess that is 

close to the global optimum considerably increases the chance of finding the latter. Moreover, a good 

initial guess will decrease the number of iterations of the optimization algorithm. Therefore, instead of 

solving the optimization problem (18) with an arbitrary initial solution, we propose to construct an initial 

guess, which approaches to the desired distribution of the DoE. However, for efficiency reasons, the 

computational effort to generate the initial guess should be just a small fraction of the optimization effort. 

Thus the proposed approach seeks to construct first a classical DoE that satisfies the constraints from 

both spaces but without relying on optimization. Certainly, the initial guess will not have the best space 

filling properties, but the idea is to come as close as possible to such a distribution by using classical DoE 

that are not based on optimization. The proposed construction of an initial guess, that satisfies the 

boundaries and constraints in both, physical and dimensionless spaces, follows the three steps described 

hereafter. 

First, a random DoE is generated in the physical space containing Ni points (experiments), with Ni much 

higher than the number of points that are needed (typically we chose Ni=20000). The designed DoE 

should satisfy only the boundaries and constraints imposed on the physical space; the constraints 

propagated from the dimensionless space are not considered at this point. The corresponding DoE in the 

dimensionless space is built by applying the transformation from eq. (12). At the moment the number of 

points highly exceeds the required number of experiments; it will be reduced later. The importance of the 

high number of points is to efficiently fill the dimensionless design space. At this step the obtained DoE in 

the dimensionless space will satisfy only the constraints from the physical space. In the following, the sets 

of points of this DoE are denoted by X−1 and Π−1 for the physical and dimensionless space, respectively. 

In the second step another DoE having the following features is computed only for the dimensionless 

space: 



1. the number of points should be equal to the desired number of experiments or should 
correspond to the number of levels on each variable (also called factors in the literature), 

2. the DoE should be constrained only by the bounds of the dimensionless variables, 
3. the method used to generate the DoE should allow imposing the number of levels on each 

variable (factor), 
4. the generated DoE should have good space filling distribution, 
5. in order to be time efficient the method should not rely on optimization. 

One of the simplest DoE that satisfies most of the above features is the full factorial (FF) design. It 

provides a distribution that fills the design space very evenly, it can easily handle different number of 

levels on each variable, it does not use optimization, and it is naturally constrained by min-max bounds. 

That is why for this step FF design is considered. Note however that if a full factorial is not practical due to 

the high dimension of the dimensionless space than optimal latin hypercube design could also be used. 

In the following the set of points of this DoE is denoted by Π𝐹𝐹. It should be noted however that using FF 

design, an inconsistency with the desired size of the DoE may occur. If the size of the DoE is specified by 

the number of levels on each variable, FF design naturally handles this specification. However if the size of 

the DoE is specified by the number of points to be placed, there may be situations when this number is 

not achievable with FF design. Actually, the number of points generated by FF design is given by 

𝑁𝐹𝐹 = 𝑘𝜋1
𝑘𝜋2

… 𝑘𝜋𝑚
, where 𝑘𝜋𝑖

 is the number of desired levels on the variable 𝜋𝑖. Thus, it can happen 

that any combination of levels cannot give the desired number of points 𝑁. In this case the proposed 

algorithm will generate the smallest possible number of experiments 𝑁𝐹𝐹 above the desired size 𝑁, i.e. 

the smallest 𝑁𝐹𝐹 which satisfies 𝑁𝐹𝐹 > 𝑁. Thus, the user can either accept a higher number of 

experiments or discard the extra-points in the next step.  

At this moment there are two DoE in the dimensionless space: a very dense one (Π−1) that satisfies the 

constraints of the physical space and a small one (Π𝐹𝐹) that has the desired size (except when the remark 

just above holds), has reasonably good space filling properties and fulfils the constraints from the 

dimensionless space. Therefore in the third step an “intersection” of the two DoE is performed in order to 

obtain the one that satisfies the constraints form both, physical and dimensionless spaces. This 

“intersection” is performed as follows: for each point from the set Π𝐹𝐹 the closest point from the set Π−1 

is selected. In the following, the set of points obtained after this “intersection” is denoted by Π0 for the 

dimensionless space and 𝑋0 for the corresponding physical space. In the interior domain of Π0 the 

distribution of the selected points will be almost the same as the one given by the set Π𝐹𝐹, i.e. 

distribution of a FF design, whereas on the frontier of the domain of Π0 the points may be more closely 

spaced. Thus the set of the selected points Π0 will serve as the initial guess to be used for solving the 

optimization problem (18). The task of the optimization will be to redistribute these points in order to 

enhance the space filling criterion, i.e. maximize the minimal distance between the points. 

In case the desired number of points 𝑁 cannot be equal to the number naturally obtained by FF design, 

𝑁𝐹𝐹, there will be 𝑁𝐹𝐹 − 𝑁 points that should be discarded from the set Π𝐹𝐹. The choice is then to discard 

the points that are the most distant from the set Π−1. 

3.3 Handling of multiple levels during the optimization 
As indicated in the previous sections, sometimes it might be desirable to have different densities along 

some particular axes of the DoE. This requirement is easily implemented in the computation of the initial 

guess by imposing the number of levels for each axis in the FF design. However, after the optimization, 

the DoE will most likely have a different distribution of the levels. In order to maximize the distances 

between the points, the optimization will take less computational effort to arrange the points in more 

columns (or rows) along the axis with longer domain instead of squeezing them along the axis with 



smaller domain. Actually, optimization algorithms always set tolerances on the cost function and 

maximum number of evaluations. Thus, slightly changing the coordinates of the points along the direction 

with a narrow domain will finally improve the cost function by a very small amount, which may often be 

less than the tolerance value. Accordingly, it will pay more to change the coordinates along the direction 

with a larger domain. Therefore, the number of levels after the optimization will mainly depend on the 

ratios of the length of feasible intervals of each axis. 

Certainly, it is possible to decrees the tolerance of the cost function and increase the maximal number of 

evaluations. However, in this case the optimization will take much more computational effort. In order to 

overcome this problem, we propose another solution that does not need to increase the computational 

effort of the optimization. We propose to rescale all the axes of the dimensionless space in function of the 

number of levels required for each dimensionless variable, run the optimization on the rescaled axes and 

then scale back the solution to get the original coordinates.  

Consider that on the axis corresponding to the dimensionless variable 𝜋𝑖, 𝑘𝜋𝑖
 levels are required. The 

length of the feasible interval of the axis 𝜋𝑖 can be computed as: 

𝑙𝑖 = max[𝜋𝑖
1, … , 𝜋𝑖

𝑁] − min[𝜋𝑖
1, … , 𝜋𝑖

𝑁],   ∀𝑖 ∈ {1, … , 𝑚} (19) 

where 𝜋𝑖
𝑗
 is the coordinate 𝑖 of the point 𝑃𝑗 from the initial guess set Π0. The scaling coefficient 𝑐𝑖 can be 

defined as: 

𝑐𝑖 =
𝑘𝜋𝑖

− 1

𝑙𝑖
,   𝑖 ∈ {1, … , 𝑚} (20) 

Subtracting 1 from 𝑐𝑖 in the above formula enables to pass from the number of levels in the interval 𝑙𝑖 to 

the number of segments in this interval. 

All the axes of the dimensionless space have to be scaled by the coefficients 𝑐𝑖, before starting the 

optimization procedure. By performing this scaling, the new lengths of the feasible intervals become 

equal to the number of desired levels on each axis. In order to better illustrate the scaling, a 2-

dimensional example is given in Figure 2. For convenience, consider that the feasible domain of the 

dimensionless space is only bounded by min/max limits on each axis, e.g. 𝜋1 ∈ [2, 6] and 𝜋2 ∈ [1, 2]. 

Suppose it is desired to have a DoE with at least two levels on 𝜋1 axis and at least three levels on 𝜋2 axis. 

The initial distribution of the six points will be equivalent to the one depicted in Figure 2 (a). The feasible 

interval of 𝜋1 axis is 𝑙1 = 4 and that of 𝜋2 axis is 𝑙2 = 1. It is self-evident that during the optimization in 

order to maximize the minimal distance between the points they will be distributed in several columns 

along 𝜋1 axis, regardless of the coordinate 𝜋2, as shown in Figure 2 (b). The sensitivity of the cost function 

with respect to 𝜋2 axis is much smaller than with respect to 𝜋1. On the other hand, by rescaling the axes 

with coefficients calculated by eq. (20) (𝑐1 = 0.25 and 𝑐2 = 2 ) gives an initial guess depicted in Figure 2 

(c). In this case the distance between every level is equal and thus the sensitivity of the cost function is 

equal with respect to both axes. 



 

FIGURE 2. AXES SCALING TO CONTROL THE NUMBER OF LEVELS ON EACH AXIS DURING THE 

OPTIMIZATION. (A) INITIAL DISTRIBUTION; (B) DISTRIBUTION AFTER OPTIMIZATION WITHOUT AXIS 

SCALING; (C) INITIAL AND OPTIMIZED DISTRIBUTION WITH AXES SCALING. 

3.4 Improvement of the distribution in physical space 
The proposed approach assumes a good distribution of the DoE in the dimensionless space. Nevertheless, 

a good distribution of the DoE in the physical space may help to identify errors in the construction of 

dimensionless numbers. In order to have good coverage in both, physical and dimensionless spaces, the 

computation of DoE becomes a multi-objective optimization problem. Changing the formulation of the 

optimization problem (18) in order to consider a multi-objective cost function is however nontrivial; 

additional decision factors will be involved such as weighting coefficients or choosing a solution from the 

Pareto front. Moreover, the optimization process itself becomes heavier. Therefore in the following we 

propose a simpler solution which is not necessarily optimal but which increases the chance to get better 

results with minimal effort. 

The proposed solution deals with the choice of the initial guess 𝑋0. As explained in the first section, there 

are multiple combinations of physical coordinates (points in the physical space) that give the same 

coordinate (point) in the dimensionless space. Thus, during the first step of the initial guess design, when 

a high number of points is generated, there will certainly be points that are very distant from each other 

in the physical space but close to each other in the dimensionless space. In the light of this observation, 

the idea of the proposed solution is to choose an initial guess that is close to the FF design in the 

dimensionless space, but in the same time maximizes the spread of the corresponding points in the 

physical space. A way to achieve this is to adapt the fourth step of the initial guess design as follows. For 

each point in the set Π𝐹𝐹, there will be selected groups of three closest points from the set Π−1 instead of 

selecting only one (the closest). Then, from each group of three is selected the one which gives the best 

distribution for the corresponding points in the physical space. Although it is not guaranteed that after 

optimization the distribution in the physical space will be optimal, starting from a more uniform 

distribution of the initial guess will lead to better space filling design in the physical space. 

3.5 Declination of the proposed method for power laws 
As pointed out in the introduction, dimensionless variables are almost always monomials, i.e. products of 

powers of physical variables. When the dimensionless domain covers several orders of magnitudes, the 

power laws turn out to be well fitted for approximating the response of the system. We will thus provide 

in this section a particular declination of the proposed method for power laws. 

Consider the power law needing to be identified based on the DoE which is expressed as a product of 

dimensionless numbers at a certain power 𝑏: 

𝜋0 = 𝑐 ∏ 𝜋𝑖
𝑏𝑖

𝑚

𝑖=1

 (21) 
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with 𝑐 being a constant. The parameters to be identified for such functions are the power coefficients, 𝑏𝑖 

and the constant 𝑐. In this case a logarithmic transformation is very useful because it transforms the 

nonlinear regression problem into a linear one: 

log 𝜋0 = log 𝑐 + ∑ 𝑏𝑖 log 𝜋𝑖

𝑚

𝑖=1

 (22) 

In this case it is better to have a DoE with good distribution in the logarithmic scale instead of the linear 

scale. This means that the manipulated variables in the physical and in the dimensionless space will be 

logarithmic, which implies that the expression (12) becomes linear. This may alleviate the computational 

effort for solving the optimization problem (18). Thus by simply working with logarithms of physical and 

dimensionless variables instead of their decimal representations, may significantly enhance the efficiency 

of the optimization problem solving. 

Finally, the proposed method to construct the DoE described in this section can be visually illustrated by 

the flowchart from Figure 3. 

 

 

FIGURE 3. FLOWCHART OF THE PROPOSED METHOD 
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The time cost of computing a DoE using the proposed method is mainly impacted by the size of the 

DoE. This is due to the fact that increasing the number of points will rapidly increase the number of 

distances, 𝑑𝑖𝑗, to be evaluated during the optimization. Some orders of magnitude observed in our tests 

carried out in Matlab on a standard PC (2.3 GHz quad-core CPU and 16 Go RAM) are: 10 s for a DoE 

containing 10 points, 1 min. for a DoE containing 50 points and 30 min. for a DoE containing 100 points. 

Keep in mind that one of the purposes of building surrogates using dimensionless variables is to have 

smaller design space. The design space rarely exceeds four or five dimensions or 100 design points. For 

expensive simulation models the DoE construction cost is thus negligible over carrying out the simulations 

at the DoE points. 

4 Case studies 
This section presents three case studies that illustrate the use and results obtained by the proposed 

method. First, a purely numerical example is presented, which aims to illustrate the manipulations of the 

proposed method and its different variations. In the next two case studies a DoE is constructed for real 

world applications in the electro-mechanical actuation domain [50], aimed to estimate the mechanical 

stiffness of a structural element and the thermal exchange coefficient of a cylinder. 

4.1 Numerical case study 
Let’s first consider a simple analytical example discussed in the introduction which treats three 

independent physical variables, denoted 𝑥𝑖 , 𝑖 = {1,2,3} and two dimensionless variables, denoted 𝜋1 and 

𝜋2. The relations between the variables are: 

 𝜋1 =
𝑥1

𝑥2
 and 𝜋2 =

𝑥2

𝑥3
 (23) 

The physical variables may represent the dimensions of a cuboid component and the dimensionless 

numbers the aspect ratios of the studied component. Let’s first consider only bounds on the physical 

variables as: 

10 ≤ 𝑥𝑖 ≤ 100, 𝑖 ∈ {1, 3} and 1 ≤ 𝑥2 ≤ 1000 (24) 

It is considered that the searched function of dimensionless numbers is a power law which requires a 

good distribution of the DoE in logarithmic scale. Therefore, in the following all the plots will be presented 

in logarithmic scale in order to illustrate the quality of the distribution at each step of the method. It will 

also be considered that the required size of the DoE is 50 points. Thus, in the following, first, an initial 

guess is generated, after which the optimization is performed in order to fulfill the space filling criterion. 

In the first step of the initial guess design, a random DoE is generated for the physical space, containing a 

very large number of points (here 20.000). Its single property is to have a good coverage of the entire 

physical domain. By applying to the obtained set the transformations from eq. (23) will give a 

corresponding DoE in dimensionless space, which is provided in Figure 4. This figure clearly illustrates how 

the constraints from the physical space (eq. (24)) are propagated to the dimensionless space (diagonal 

borders). 



 

FIGURE 4. DOE IN DIMENSIONLESS SPACE AT THE FIRST ITERATION FOR THE DESIGN OF THE INITIAL 

GUESS (SET Π−1) 

At the second step of the initial guess design, a FF DoE is generated in the dimensionless space. The 

bounds on each dimensionless axis are calculated as the extremes of the obtained set Π−1 plotted in 

Figure 4. These are: 

0.01 ≤ 𝜋𝑖 ≤ 100, 𝑖 ∈ {1,2} (25) 

The obtained FF DoE, the set Π𝐹𝐹, is illustrated by circles in Figure 5 (left). It has seven levels on each 

factor, thus giving 49 points which is very close to the desired number of experiments, i.e. 50. At the 

moment, the FF design has no equivalent DoE in the physical space and it also violates the constraints 

from the physical space (eq. (24)). 

  

FIGURE 5. (LEFT) STEP 2 AND 3 FOR THE COMPUTATION OF THE INITIAL GUESS. (RIGHT) INITIAL 

SOLUTION AND FINAL, OPTIMIZED, DOE 

The last step of the initial guess computation is to choose from the set illustrated in Figure 4 the closest 

points to the FF design from Figure 5 (left). The points obtained at this step are illustrated by red stars in 

Figure 5 (left). As it can be seen, in the interior of the dimensionless domain the selected points are very 

close to the FF design, thereby having a good space distribution. However, on the frontier of the domain, 

the points are more closely spaced, thus giving a non-optimal overall space filling. If the number of 
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experiments for the DoE (here 50 points) is mandatory, then at this stage a random additional point can 

be picked up from the set Π−1 generated in step 1 in order to have a total of 50 experiments. 

The next step is to optimize the space filling criteria starting from the initial guess, computed above. The 

optimization problem is formulated according to eq. (18) where the last two inequality constraints, i.e. 

𝜋𝑗,min ≤ 𝑓𝑗(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) ≤ 𝜋𝑗,max and 𝑔𝑖(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) are non-existent in this problem. Since we are working 

in logarithmic scale, the manipulated variables are actually logarithms of the physical variables. 

Consequently the constraints from eq. (24) should be transformed in log space in order to be used in the 

optimization. The results of the optimization are given in Figure 5 (right). It can be noted that the 

optimization effectively re-distributed the points of the initial guess in order to give a good space filling of 

the design space which satisfies the constraints of the physical domain. 

Since the evaluation of the distribution quality out of its graphical representation may be subjective, and 

even impossible above three-dimensional spaces, we defined a numerical distribution indicator. In order 

to compute this indicator the first step is to calculate for each point the distance to its nearest neighbor. 

Then, the distribution indicator, 𝑄, is defined as the ratio between the standard deviation of all these 

distances and their mean. Thus, a number closer to one will indicate that the distances between the 

neighboring points are very different, which correspond to an uneven distribution whereas a small 

number will indicate that the points are spaced more uniformly. Moreover, since this criterion is not 

minimized in the optimization problem, it increases the objectivity of the distribution evaluation. 

The defined distribution indicator calculated for the optimized DoE in Figure 5 (right) is 𝑄 ≈ 1.7𝑒 − 9, 

which indicates a very good distribution. By comparison, this indicator is 𝑄 ≈ 0.7 for the initial guess 

distribution, which is plotted in Figure 5 right. Here, this indicator reveals an uneven distribution, which is 

clearly observable between the points lying along the frontier and those on the domain interior. 

Consider now the same example as above but with an additional constraint on a dimensionless variable, 

as: 

1 ≤ 𝜋1 ≤ 10 (26) 

Additionally, suppose that we need at least ten levels on the variable 𝜋1, based on a priori knowledge that 

the model is highly nonlinear with respect to this variable. If the number of experiments is the same as 

above, about 50 points, the appropriated initial full-factorial design would have 10 levels on 𝜋1 and 5 

levels on 𝜋2. By applying the same steps as above, the obtained DoE before and after optimization is 

illustrated in Figure 6 left. It can be noted that the initial design satisfies the requirement of 10 levels on 

𝜋1 but is not optimally distributed (𝑄 ≈ 0.42). After the optimization, the distribution is more even 

(𝑄 ≈ 1.5𝑒 − 6) but only about 6 levels on 𝜋1 can be more clearly distinguished. Note that visually the 

points do not seem to be well distributed. This is actually only an illusion because the scale on the two 

axes is not the same. There are three decades represented on the 𝜋2 axis and only one decade on the 𝜋1 

axis. To cope with the desired number of levels issue during the optimization, the scaling computed by eq. 

(20) is applied to the dimensionless space. This gave the DoE depicted in Figure 6 right, where the 10 

levels can be clearly identified on the axis 𝜋1. Thus, it can be seen that the proposed method can 

effectively handle the number of desired levels on each axis independently of the imposed constraints on 

the dimensional or dimensionless variables.  



  

FIGURE 6. DOE WITH MIN-MAX BOUNDS ON 𝜋1 : (LEFT) THE NUMBER OF LEVELS ON 𝜋1 IS NOT SATISFIED 

(RIGHT) THE NUMBER OF LEVELS ON 𝜋1 IS SATISFIED 

4.2 Mechanical example 
In the following the proposed method is applied on a real world example which compared to the previous 

one includes additional constraints on the dimensional variables. The case under study refers to a 

structural element (a connecting rod) designed to link the rotor of an electrical machine to a mechanical 

structure. The geometrical configuration of this component is illustrated in Figure 7. The aim is to design 

𝑁 experiments in order to evaluate the maximum Von Mises stress of this component using the 

dimensionless approach. This DoE should be used to construct a surrogate model of the stress, which 

could be used during a preliminary design stage. The maximum Von Mises stress 𝜎𝑣 of the rod depends on 

its geometrical parameters 𝐷1, 𝐷2, 𝑒1, 𝑒2, 𝐿𝑟 and 𝑒𝑟, and torque 𝜏 applied on the ring on motor’s side with 

diameter 𝐷1. From practical considerations it is assumed that the thicknesses 𝑒1 and 𝑒2 are set to 25% of 

the diameters 𝐷1 and 𝐷2, respectively. The problem can be transformed into a dimensionless 

representation as: 

𝜋0 = 𝑓(𝜋1, 𝜋2, 𝜋3) (27) 

with 𝜋0 =
𝜎𝑣𝐿3

𝜏
, 𝜋1 =

𝐷1

𝐿𝑟
, 𝜋2 =

𝐷2

𝐿𝑟
 and 𝜋3 =

𝑒𝑟

𝐿𝑟
.  

 

FIGURE 7. GEOMETRICAL CONFIGURATION OF THE CONNECTING ROD 
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TABLE 1. DOMAIN OF DEFINITION OF PHYSICAL VARIABLES FOR THE MECHANICAL EXAMPLE 

Variable Unit Range 

𝐷1 𝑚𝑚 10 − 50 

𝐷2 𝑚𝑚 10 − 50 

𝑒𝑟 𝑚𝑚 5 − 30 

𝐿𝑟 𝑚𝑚 150 − 300 

 

The DoE to be defined concerns the dimensionless variables 𝜋1, 𝜋2 and 𝜋3 and the physical variables 

𝐷1, 𝐷2, 𝐿𝑟 and 𝑒𝑟. Given the number of dimensionless variables, a DoE of 27 experiments will be 

considered. The domains of variation of the physical variables are given in Table 1. Moreover, in order to 

keep the design realistic, the following additional constraints are considered on the physical variables: 

𝐷1 + 𝐷2 + 𝑒1 + 𝑒2 < 0.5𝐿𝑟 (28) 

3 >
𝐷1

𝐷2
>

1

3
 (29) 

Eq. (28) will constrain the DoE to avoid the superposition of the two holes (of diameters 𝐷1 and 𝐷2) while 

imposing a minimal amount of material in-between, whereas eq. (29) will avoid having unreasonable 

geometrical shapes of the rod. For this example, there are no additional constraints on the dimensionless 

numbers. As in the previous example, it is considered that a good distribution of the dimensionless space 

in logarithmic domain is needed. 

For this application, the optimization problem (18) becomes: 

Maximize
𝑧,𝐷1

𝑘,𝐷2
𝑘,𝑒𝑟

𝑘,𝐿𝑟
𝑘

𝑧 ∀𝑘 ∈ {1, . . ,27}

Subject to    𝑧 − 𝑑𝑖𝑗 ≤ 0 ∀𝑖, 𝑗 ∈ {1, . . ,27}, 𝑖 < 𝑗

10 ≤ 𝐷1
𝑘 ≤ 50

10 ≤ 𝐷2
𝑘 ≤ 50

5 ≤ 𝑒𝑟
𝑘 ≤ 30

150 ≤ 𝐿𝑟
𝑘 ≤ 300

𝐷1
𝑘 + 𝐷2

𝑘 + 𝑒1
𝑘 + 𝑒2

𝑘 − 0.5𝐿𝑟
𝑘 < 0

𝐷1
𝑘 − 3𝐷2

𝑘 < 0

𝐷2
𝑘 − 3𝐷1

𝑘 < 0

 (30) 

with 𝑑𝑖𝑗 defined as in eq. (15) where 𝑃𝑘 = (log10
𝐷1

𝑘

𝐿𝑟
𝑘 , log10

𝐷2
𝑘

𝐿𝑟
𝑘 , log10

𝑒𝑟
𝑘

𝐿𝑟
𝑘) , ∀𝑘 ∈ {1, … , 27}. As it can be 

seen, the first constraint, involving the Euclidian distance, is non-linear.  

After application of the proposed procedure to compute an initial guess and solving the optimization 

problem (30), the obtained initial and optimized DoE are plotted in Figure 8. As it can be seen, for three-

dimensional space it is difficult to visually assess the quality of the distribution, and it is even impossible 

for higher dimensions. That is why the previously defined quality factor 𝑄 is mainly used in this case. In 

this example, for the initial guess this indicator is 𝑄 ≈ 0.32 whereas for the optimized DoE it is 

𝑄 ≈ 1.8𝑒 − 2, which indicates a clear improvement over the initial guess.  



Since the final purpose of any DoE is to improve the quality of the regression model, we compared the 

accuracy of the models obtained by using the proposed DoE and an optimal LHS design on the physical 

variables (which is a classical DoE). The projection of the LHS design in the dimensionless space is depicted 

in Figure 8, whose distribution quality coefficient is 𝑄 ≈ 0.53. Despite its good distribution in the physical 

space, this DoE does not conserve this property in the dimensionless space. Moreover, only 24 points out 

of 27 satisfy the constraints from eqs. (28) and (29).  

The two DoE were used first for the construction of two surrogate models, and the quality of the obtained 

surrogates was compared in terms of maximum error both on the DoE as well as on a separate validation 

set with 60 points (in order to test interpolation and extrapolation capabilities). Note that for this problem 

the choice of the surrogate type is not trivial.  We first tested polynomial models, but they were totally 

unadapted for this study, where the prediction error surpassed 1000% on the validation set for both 

DoEs. We then chose for the surrogate type a constant power law model. The maximal error at the DoE 

points using the LHS design was 9% whereas using the proposed DoE the error was 14%. However, when 

the models were tested on the validation set, the one build on LHS design exhibited 18% maximal error 

whereas the model built on the proposed DoE – only 6%. These errors are relatively high for both DoEs 

which indicates that the surrogate type is still not appropriate for this problem. Therefore, we turned to 

variable power law models of the form 𝜋0 = 𝑘𝜋1
𝑎1+𝑎2 log 𝜋2𝜋2

𝑏1+𝑏2 log 𝜋2 log 𝜋3𝜋3
𝑐, as proposed in [23]. By 

doing so the maximal regression error dropped to 3% for both the optimal LHS and the proposed DoE. 

However, when the built models were tested on the validation set, the one build on LHS design exhibited 

15% maximal error whereas the model built on the proposed DoE remained at 3%.  These results confirm 

the intuitive assessment that a DoE with a good distribution indicator Q leads to more accurate surrogate 

models over the entire domain (i.e. when including validation points, that were not included for the 

surrogate construction). Table 2 gives an overview of the comparison results. 



  

FIGURE 8. DOE FOR THE MECHANICAL CASE: INITIAL GUESS AND OPTIMIZED 

  

TABLE 2: OVERVIEW OF MODEL ACCURACY FOR MECHANICAL CASE STUDY WHEN USING PROPOSED AND 

CLASSICAL DOE 

 Model using LHS DoE Model using proposed DoE 

Constant 

power law 

model 

Variables 

power law 

model 

Constant 

power law 

model 

Variables 

power law 

model 

Size of the DoE satisfying the 

constraints/desired size of DoE 

24/27 24/27 27/27 27/27 

Maximal relative prediction error at the 

points of the DoE that served for 

surrogate construction 

9% 3% 14% 3% 

Maximal relative prediction error at the 

points of the validation set 

18% 15% 6% 3% 

 

4.3 Thermal example 
For this last example let’s consider the problem of assessing the convective heat transfer coefficient of a 

cylinder. This problem is typical for the selection of an electrical motor, at a preliminary design stage, 
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whose continuous torque depends on its thermal balance. This example highlights the effects of 

constraints propagation between both spaces, which may generate problems if the DoE is constructed in 

one space (either dimensional or dimensionless) as explained in introduction. 

The mean convective heat transfer coefficient ℎ̅ of a cylinder of length 𝐿, diameter 𝐷 and elevation of the 

skin temperature above the ambient temperature Δ𝜃, can be expressed in terms of dimensionless 

variables as: 

𝑁𝑢 = 𝑓(𝜋, 𝑃𝑟, 𝐺𝑟) (31) 

with 𝑁𝑢 =
ℎ̅𝐷

𝜆
 – the Nusselt number, 𝜋 =

𝐿

𝐷
 – the aspect ratio of the cylinder, 𝑃𝑟 =

𝜆

𝜇𝐶𝑝
 – the Prandtl 

number, and 𝐺𝑟 =
𝑔𝛽𝜌2Δ𝜃𝐷3

𝜇2  – the Grashof number. In this problem the parameters 𝜆, 𝜇, 𝐶𝑝, 𝛽 and 𝜌 

represent the physical properties of air, which here for convenience are considered to be constant 

(although they vary slightly with the temperature). 𝑔 is the gravitational constant. The 𝑃𝑟 number 

appears to be constant as well and thereby it will not be considered for the DoE. Thus, for the DoE there 

are two dimensionless variables 𝜋 and 𝐺𝑟 which depend on three physical variables, .i.e. 𝐿, 𝐷 and Δ𝜃. The 

problem of modeling the thermal convection around a cylinder is often encountered in the literature, and 

usually it is modeled by a constant power law [26]. 

Let’s consider that we want to explore configurations with physical variables varying within the domains 

presented in Table 3. Additionally, it is desired to reduce the DoE to realistic shapes of a motor, where its 

aspect ratio is bounded as 𝜋𝑚𝑖𝑛 < 𝜋 < 𝜋𝑚𝑎𝑥 . For convenience, these limits are considered to be 

𝜋𝑚𝑖𝑛 = 0.5 and 𝜋𝑚𝑎𝑥 = 3. 

If one would build a full-factorial DoE in the physical domain, the obtained DoE in the dimensionless 

domain would be the one in Figure 9. The number of points in this example is intentionally higher than 

necessary for regression, in order to better illustrate the problem of constraints propagation. As it can be 

seen, the points are poorly distributed in the dimensionless space, which may impact negatively the 

quality of the estimated surrogate model from eq. (31). Moreover, half of the points are situated outside 

the considered limits of 𝜋. Although having points outside the domain of interest may be seen as a non-

issue, there is however a drawback. Considering that the model in eq. (31) is a response surface model, 

the regression process will minimize the estimation error in respect to every point from Figure 9. This will 

lead to a compromise between the estimation errors corresponding to the points within the domain of 

interest of 𝜋 with those outside this domain. Consequently, besides spending unnecessary resources for 

the simulation of unrealistic configurations, this compromise may reduce the fidelity of the model inside 

the domain of interest.  

There is yet another danger when using this DoE. For Grashof numbers lower than 108 the flow is laminar 

whereas for 𝐺𝑟 > 109 the flow is turbulent (in-between it is mixed convection). Therefore, in order to 

have consistent simulation results, different finite element models are needed for each situation (laminar 

or turbulent flow). Since the DoE often has a significant number of configurations to be simulated, the 

common practice is to launch them in batch mode. In this case a single parametric model is used where 

some of the physical variables are varied according to the DoE. As it can be seen from Figure 9, the 

problem with this is that a single model is used for different flow regimes. Thus, in the best case the 

simulation will fail for some configurations, and in the worst case the obtained simulation results will be 

wrong.  

Given the problems highlighted with the constructed DoE in the physical space, the other possibility is to 

build a DoE in the dimensionless space and then calculate an equivalent DoE in the physical space. Here 



however, two other problems arise: (1) there is no lower bound for the Grashof number and (2) the points 

that will be placed outside the limits induced by the constraints from the physical domain will be 

unfeasible. Consequently, in order to satisfy the constraints form the physical and the dimensionless 

domains, the proposed solution solves a constrained optimization problem which considers both 

dimensional and non-dimensional constraints simultaneously. 

TABLE 3. DOMAIN OF DEFINITION OF PHYSICAL VARIABLES FOR THE THERMAL EXAMPLE 

Variable Unit Range 

𝐿 𝑚 0.1 − 0.5 

𝐷 𝑚 0.1 − 1 

Δ𝜃 𝐾 50 − 100 

𝐿/𝐷 − 0.5 − 3 

 

 

FIGURE 9. DOE IN THE DIMENSIONLESS SPACE CORRESPONDING TO A FULL-FACTORIAL DOE IN PHYSICAL 

SPACE 

By applying the proposed method on this application, the optimization problem (18) becomes: 

Maximize
𝑧,𝐿𝑘,𝐷𝑘,Δθk

                       𝑧 ∀𝑘 ∈ {1, . . ,9}

Subject to                       𝑧 − 𝑑𝑖𝑗 ≤ 0       ∀𝑖, 𝑗 ∈ {1, . . ,9}, 𝑖 < 𝑗

Constraints              0.1 ≤ 𝐿𝑘 ≤ 0.5                                    

on physical     0.1 ≤ 𝐷𝑘 ≤ 1

variables           50 ≤ Δ𝜃𝑘 ≤ 100

   

Constraints on 𝐿𝑘 − 3𝐷𝑘 ≤ 0                                    

dimensionless 0.5𝐷𝑘 − 𝐿𝑘 ≤ 0

  variables              𝑔𝛽𝜌2ΔθDk
3 − 109𝜇2 ≤ 0

 

(32) 
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with 𝑑𝑖𝑗 defined as in eq. (15) where 𝑃𝑘 = (log10
𝐿𝑘

𝐷𝑘
, log10

𝑔𝛽𝜌2Δθk𝐷𝑘
3

𝜇2 ) , ∀𝑘 ∈ {1, … , 9}. Note that in this 

example the index 𝑘 does not appear at the exponent in order not to confuse with 𝐷3 in the definition of 

the Grashof number. 

After application of the proposed procedure to compute an initial guess and solving the optimization 

problem (32), the obtained initial and optimized DoE are plotted in Figure 10. In this example, for the 

initial guess the distribution indicator is 𝑄 ≈ 0.33 whereas for the optimized DoE it is 𝑄 ≈ 7𝑒 − 2, which 

indicate a clear improvement over the initial guess. The obtained DoE obviously satisfies the constraints 

from both spaces, physical and dimensionless. 

 

FIGURE 10. DOE FOR THE THERMAL EXAMPLE: INITIAL GUESS AND OPTIMIZED 

As in the previous example, we tested the impact of the proposed DoE on the model accuracy by 

comparison with an LHS design on the physical variables. The projection of the LHS design in the 

dimensionless space is illustrated in Figure 10. Its distribution quality coefficient is 𝑄 ≈ 1.1 and it can be 

visually noted that the only a small fraction of the domain of interest is covered. This time, only 4 points 

out of 9 satisfy the constraints on the dimensionless space, represented in Figure 9. As stated before, a 

constant power law is well suited for this component. Accordingly we considered a surrogate under the 

form 𝜋0 = 𝑘𝜋𝑎𝐺𝑟𝑏. An overview of the errors obtained by the models built on these two DoE is given in 

Table 1. The conclusions are similar to the previous case: (1) the proposed DoE enables to control the size 

of the desired DoE without losing points that do not satisfy the constraints from both domains and (2) the 

accuracy of the model built using the proposed DoE exhibit better accuracy over the entire domain in 

comparison with classical DoE that don’t provide good distribution in the dimensionless space.  
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TABLE 4: OVERVIEW OF MODEL ACCURACY FOR THE THERMAL CASE STUDY WHEN USING PROPOSED AND 

CLASSICAL DOE 

 Model using LHS DoE Model using proposed DoE 

Size of the DoE satisfying the 

constraints/desired size of DoE 

4/9 9/9 

Maximal relative prediction error 

at the points of the DoE that 

served for surrogate construction 

1% 4% 

Maximal relative prediction error 

at the points of the validation set 

10% 5% 

5 Conclusions 
This paper first introduced the problem of constructing a DoE for applications where the searched model 

uses dimensionless variables as inputs of the model. It was shown that building a DoE in one domain, 

(physical or dimensionless) and computing the corresponding DoE in the other domain is often 

problematic due to the constraints from both spaces. The paper proposed a solution to this problem by 

formulating the computation of the DoE as an optimization problem and providing an approach for 

efficiently solving the problem. The proposed method gives: (1) a DoE for the dimensionless space that 

optimally fills the dimensionless domain and satisfies the constraints from both spaces, and (2) the 

corresponding DoE in the physical domain which should be used to set up the simulations. The optimality 

criterion of the distribution used during the optimization is the maximization of the minimal Euclidian 

distance between any two points of the DoE. In order to assess the distribution of the obtained DoE after 

the optimization, a quantitative indicator was proposed. This indicator is very useful for cases when the 

DoE is 3-dimensional and above, when it is difficult or even impossible to visually assess the quality of the 

distribution. The proposed DoE is particularly relevant for constructing surrogates in terms of 

dimensionless variables that span over several orders of magnitude (e.g. power laws). Additionally, two 

declinations of the method were outlined for situations when (1) the logarithmic scale is better suited for 

the DoE and (2) when the user needs to control the number of levels on one or each axis (factor). The 

application of the method was illustrated on three examples, a purely numerical and two real world cases. 

The numerical example served to illustrate the proposed method step-by-step whereas the next two 

examples highlighted the situations that can be encountered in engineering applications and the results 

that can be obtained by the proposed method. 

References 

[1] VDI, Design methodology for mechatronic systems. Düsseldorf. 
[2] Catalina T, Virgone J, Blanco E (2008) Development and validation of regression models to predict 

monthly heating demand for residential buildings. Energy and Buildings 40:1825-1832 
[3] Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering Design via Surrogate Modelling. Wiley 
[4] Pereira FC, Antoniou C, Fargas JA, Ben-Akiva M (2014) A Metamodel for Estimating Error Bounds 

in Real-Time Traffic Prediction Systems. IEEE Transactions on Intelligent Transportation Systems 
15(3):1310-1322  

[5] Santner TJ, Williams BJ, Notz WI (2013) The design and analysis of computer experiments. 
Springer Science & Business Media. 

[6] Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for 
parametric dynamical systems. SIAM review 57(4):483-531 

[7] Chinesta F, Huerta A, Rozza G, Willcox K (2016) Model Order Reduction: a survey. Wiley 



[8] Wilhelmus HAS, Henk A v-d V, Joost R (Eds) (2008) Model Order Reduction: Theory, Research 
Aspects and Applications. Springer, Berlin 

[9] Fang K-T, Li R, Sudjianto A (2006) Design and Modeling for Computer Experiments. Chapman & 
Hall/CRC, Boca Raton 

[10] Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under 
multiple modelling criteria. Struct Multidisc Optim 23:1-13 

[11] Myers RH, Montgomery DC (2002) Response Surface Methodology: Process and Product in 
Optimization Using Designed Experiments. John Wiley & Sons, New York 

[12] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based 
analysis and optimization. Progress in aerospace sciences 41(1):1-28 

[13] Vignaux GA, Scott JL (1999) Simplifying regression models using dimensional analysis. Austral & 
New Zealand J Statist 41:31-41 

[14] Lacey D, Steele C (2006) The Use of Dimensional Analysis to Augment Design of Experiments for 
Optimization and Robustification. Journal of Engineering Design 17(1):55–73 

[15] Mendez P, Ordonez F (2005) Scaling laws from statistical data and dimensional analysis. Journal 
of Applied Mechanics 72(5):648-658 

[16] Kaufman M, Balabanov V, Grossman B, Mason WH, Watson LT, Haftka RT (1996) Multidisciplinary 
Optimization via Response Surface Techniques. Proceedings of the 36th Israel Conference on 
Aerospace Sciences, Omanuth, Haifa, Israel 

[17]  Venter G, Haftka RT, Starnes JH (1998) Construction of response surface approximations for 
design optimization. AIAA Journal 36(12):2242-2249 

[18] Gogu C, Haftka RT, Bapanapalli SK, Sankar BV (2009) Dimensionality Reduction Approach for 
Response Surface Approximations: Application to Thermal Design. AIAA J 47:1700–1708 

[19] Vaschy A (1892) Sur les lois de similitude en physique. Annales télégraphiques 19:25-28 
[20] Buckingham E (1914) On physically similar systems: illustration of the use of dimensional 

equations. Phys Rev 4:345–376 
[21] Sonin AA (2001) The Physical Basis of Dimensional Analysis. 2nd edition. Massachusetts Institute 

of Technology, Cambridge, MA 
[22] Li C-C, Lee Y-C (1990) A statistical procedure for model building in dimensional analysis. Int J Heat 

Mass Transf 33:1566–1567 
[23] Sanchez F, Budinger M, Hazyuk I (2017) Dimensional analysis and surrogate models for the 

thermal modeling of Multiphysics systems. Applied Thermal Engineering 110:758-771 
[24] Budinger M, Passieux J-C, Gogu C, Fraj A (2013) Scaling-law-based metamodels for the sizing of 

mechatronic systems. Mechatronics 24(7):775-787  
[25] Kuneš J (2012) Similarity and modeling in science and engineering. Springer Science & Business 

Media 
[26] Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of Heat and Mass Transfer. 

John Wiley & Sons  
[27] Raymer DP (2002) Aircraft design: a conceptual approach. American Institute of Aeronautics and 

Astronautics, Washington 
[28] Pahl G, Beits W, Feldhusen J, Grote K-H (2007) Engineering design: a systematic approach. 

Springer-Verlag, London 
[29] Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. Journal of the 

Royal Statistical Society Series B (Methodological) 13(1):1-45 
[30] Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. 

Technometrics 2(4):455-475 
[31] Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang R-J (2002) Approximation Methods in 

Multidisciplinary Analysis and Optimization:A Panel Discussion. in 9th AIAA/ISSMO Symposium on 
Multidisciplinary Analysis & Optimization, Atlanta 

[32] Pukelsheim F (1993) Optimal design of experiments. SIAM 
[33] Peikert R, Würtz D, Monagan M, de Groot C (1991) Packing circles in a square: a review and new 

results. In System Modelling and Optimization, Proceedings of the Fifteenth IFIP Conference, 
September 2-6, Berlin 

http://www.amazon.com/exec/obidos/ASIN/0387555773/ref=nosim/ericstreasuretro
http://www.amazon.com/exec/obidos/ASIN/0387555773/ref=nosim/ericstreasuretro


[34] Hifi M, M'hallah R (2009) A literature review on circle and sphere packing problems: models and 
methodologies. Advances in Operations Research. doi: 10.1155/2009/150624 

[35] Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. Journal of 
statistical planning and inference 43(3):381-402 

[36] Shewy M, Wynn H (1987) Maximum Entropy Design. Appl Stat 14(2):165-170 
[37] Koehler JR, Owen AB (1996) 9 Computer experiments. Handbook of statistics 13:261-308 
[38] Audze P, Eglais V (1977) New approach for planning out of experiments. Problems of Dynamics 

and Strengths 35:104-107 
[39] McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of 

input variables in the analysis of output from a computer code. Technometrics 21:239-324 
[40] Iman RL, Conover WJ (1980) Small sample sensitivity analysis techniques for computer models. 

with an application to risk assessment. Communications in statistics-theory and methods 
9(17):1749-1842 

[41] Viana FA (2013) Things you wanted to know about the Latin hypercube design and were afraid to 
ask. In 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, 
USA 

[42] Jin R, Chen W, Sudjianto A (2005) An efficient algorithm for constructing optimal design of 
computer experiments. Journal of Statistical Planning and Inference 134(1):268-287 

[43] Bates SJ, Sienz J, Toropov VV (2011) Formulation of the optimal Latin hypercube design of 
experiments using a permutation genetic algorithm. 45th AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials Conference, Palm Springs, CA 

[44] Viana FA, Venter G, Balabanov V (2010) An algorithm for fast optimal Latin hypercube design of 
experiments. International journal for numerical methods in engineering 82(2):135-156 

[45] Petelet M, Iooss B, Asserin O, Loredo A (2010) Latin hypercube sampling with inequality 
constraints. AStA Advances in Statistical Analysis 94(4):325-339 

[46] Fuerle F, Sienz J (2011) Formulation of the Audze–Eglais uniform Latin hypercube design of 
experiments for constrained design spaces. Advances in Engineering Software 42(9):680-689 

[47] Hofwing M, Strömberg N (2010) D-optimality of non-regular design spaces by using a Bayesian 
modification and a hybrid method. Structural and Multidisciplinary Optimization 42(1):73-88 

[48] Myšáková E, Lepš M, Kucerová A (2012) A Method for Maximin Constrained Design of 
Experiments. In Proceedings of the Eighth International Conference on Engineering 
Computational Technology. Civil-Comp Press, Stirlingshire, UK 

[49] Brayton RK, Director SW, Hachtel GD, Vidigal L (1979) A New Algorithm for Statistical Circuit 
Design Based on Quasi-Newton Methods and Function Splitting. IEEE Trans Circuits and Systems. 
26:784-794 

[50] Sanchez F, Delbecq S (2016) Surrogate modeling technique for the conceptual and preliminary 
design of embedded actuation systems and components. ICAS 2016, Seoul, Korea 


