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The efficient global optimization (EGO) approach was often used to reduce the 

computational cost in the optimization of complex engineering systems. This algorithm 

can remain however expensive for large scale problems since each simulation uses the full 

numerical model. We propose a novel optimization approach for such problems, where 

the numerical model solves partial differential equations involving the resolution of a 

large system of equations, such as by finite element. Our method is based on the 

combination of the efficient global optimization (EGO) approach and reduced basis 

modeling.  The novel idea is to use inexpensive, sufficiently accurate reduced basis 

solutions to significantly reduce the number of full system resolutions. Two applications 

of the proposed surrogate based optimization approach are presented: an application to 

the problem of stiffness maximization of laminated plates and an application to the 

problem of identification of orthotropic elastic constants from full-field displacement 

measurements based on a tensile test on a plate with a hole. Compared to the crude EGO 

algorithm, a significant reduction in computational cost was achieved using the proposed 

efficient reduced basis global optimization.  

I. Introduction 

One of the issues in many approaches for solving nonlinear optimization problems is that they often require a 

large number of function evaluations, with significant computational cost per evaluation. One way of reducing 

the computational cost is by using surrogates, also known as metamodels or response surface approximations to 
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replace the expensive computational simulations 
1–3

. Within the optimization domain, surrogate based 

optimization (a class of optimization methodologies that make use of surrogate modeling techniques to quickly 

find the local or global optima)
4–9

 often progresses in cycles. Each cycle consists of constructing an 

approximation of the simulation response based on a limited number of runs of the expensive simulation, using 

the surrogate to search for a candidate for the next simulations, and finally analyzing the design. Multiple 

surrogate types can be used for fitting the samples, such as polynomial response surface approximations 
10

, 

neural networks 
11–13

, support vector machines 
14–17

.The efficient global optimization (EGO) 
18

 uses a surrogate 

uncertainty estimator to guide the selection of the next point (the point that maximizes the expected 

improvement) at which a simulation will be carried out. However, this algorithm can remain expensive because 

each simulation uses the full numerical model, which can itself be very expensive. Obtaining full numerical 

accuracy may however not be required during the optimization process as have shown 
19,20

. For example, in areas 

that are far from the present best point a rough estimate of the solution may be sufficient to clarify the behavior 

of the objective function in this vicinity. Calculating a full numerical simulation at this point would thus be 

overkill in most situations. Instead, it would be advantageous if the optimization algorithms could adaptively 

select the level of fidelity it needs for the next sampling point and each new point would be thus calculated 

accordingly.   

Besides progress in optimization algorithms, reduced order modeling approaches 
21–23

, by projection of the 

response on a reduced basis have proved to be efficient methods for achieving drastic dimensionality and 

computational cost reductions. The main idea behind this concept is to construct a so called reduced basis, and 

then solve the problem projected on this low dimensional basis with drastically reduced computational cost.  

Reduced basis models have been applied before in the context of shape optimization 
24

 and topology 

optimization 
25

and showed potential for improving the efficiency of the corresponding methods. To our best 

knowledge, they have not been applied to surrogate based optimization approaches that adaptively enrich the 

surrogate to solve global optimization problems.  

The aim of this article is to propose a new surrogate based optimization approach for certain types of global 

optimization problems. Our approach is based on an adaptive coupling of the EGO algorithm with reduced basis 

modeling. The basic idea is that a reduced basis model may be sufficiently accurate for points that are much 

worse than the present best sample (exploration points) and for points near already computed solutions 

(exploitation points). A specific method for implementing this idea and constructing the reduced basis integrated 

with the kriging based optimization process is proposed. The corresponding approach can be seen as a multi-



fidelity optimization. Compared to existing multi-fidelity optimization approaches based on kriging or co-kriging 

26–28
 our proposed method can be seen as a tunable fidelity approach, since it tunes the fidelity of the reduced 

basis model to the accuracy requirements of the optimization. 

The rest of the article is organized as follows. We provide in section II the problem statement. In section III 

we provide an overview of surrogate based optimization, efficient global optimization and reduced basis 

modeling. In section IV we describe the proposed framework for coupling reduced basis modeling with 

surrogate based optimization and provide three possible implementation algorithms: the key point efficient 

reduced basis global optimization (KPERBGO), the key point efficient reduced basis global optimization with 

terminal enrichment (KPERBGOTE) and the key point efficient co-kriging based global optimization 

(KPERCGO) algorithms. In section V we give a first application example of the proposed algorithm to the 

stiffness maximization of laminated plates. In section VI we give a second application example of the proposed 

algorithms to the identification of orthotropic elastic constants from full field displacement measurements based 

on a tensile test with a hole. Finally, we provide concluding remarks in section VII. 

II. Problem statement 

Complex phenomena are modeled by complex mathematical models, implemented in large computer codes 

having significant computational cost. A single run of this computationally expensive code may take many 

hours. The computational cost issue is further amplified in optimization procedures requiring a large number of 

simulation runs and where the objective function may have a number of local minima. 

We consider here optimization problems that need to make expensive numerical simulation calls and involve 

solving partial differential equations (by techniques such as the finite element method). 

The global optimization problems considered in this work has the following form: 

min
𝜇

𝑓𝑜𝑏𝑗(𝒖;  𝝁) 

                                                  𝐾(𝝁)𝒖 = 𝑭                                                   (1) 

           𝝁𝑖
𝑙 ≤ 𝝁𝑖 ≤ 𝝁𝑖

𝑢 ,   𝑖 = 1,2, . . , 𝑝 

where: 

- 𝒖 𝜖 ℝ𝑛 the vector of state variables (e.g. the vector of nodal displacements in structural mechanics) 

-  µ 𝜖 ℝ𝑝 is the set of parameter of interest (e.g. material properties) 

- 𝝁𝑖
𝑙  𝑎𝑛𝑑 𝝁𝑖

𝑢 are given lower and upper bounds of the i
th

 parameter.  



- The equality constraint 𝐾(𝝁)𝒖 = 𝑭  represents the satisfaction of the discretized equilibrium equations 

(resulting from a finite elements scheme for example) of the underlying physical phenomenon. 𝑭 is a given 

vector of dimension n and for a given parameter of interest µ, 𝐾(𝝁) is a n x n matrix. Let us assume that for any 

value 𝝁 𝜖 ℝ𝑝, 𝐾−1(𝝁) is nonsingular. That is, there exists a unique solution 𝒖(𝝁)𝜖 ℝ𝑛 such that  

                                                     𝐾(𝝁)𝒖 = 𝑭                                                (2) 

For example in structural mechanics 𝐾(𝝁)𝒖 = 𝑭 represents the equations of the static equilibrium where 

𝐾(𝝁) is the stiffness matrix, depending of materials properties μ and F the vector of the applied forces. Note that 

while the problem is linear in u, it is not necessarily linear in μ. 

- 𝑓𝑜𝑏𝑗 ∶  ℝ𝑛  ×  ℝ𝑝 →  ℝ is the objective function which represents a target to be optimized with respect to 

parameter μ. The objective function is generally non-linear and non-convex, possibly involving multiple local 

minima. For example 𝑓𝑜𝑏𝑗 can be the strain energy or a least square objective function in identification problems. 

For large scale problem both the computational time of computing the objective function 𝑓𝑜𝑏𝑗(. , . ) and the 

factorization of the matrix 𝐾(𝝁) ,to solve the system of equations, can be quite expensive. In those cases direct 

uses of iterative optimization methods are not appropriate. 

In the next section we provide an overview of some existing approaches for dealing with the computational 

cost issue of the optimization problem defined in (1). In particular we give an overview of surrogate based 

optimization and describe the EGO algorithm for dealing with the computationally expensive objective function. 

We then also present reduced basis modeling for dealing with computationally expensive numerical models. 

Finally, we will propose a new method combining EGO and the reduced basis approach. 

III. Surrogate based optimization and reduced basis modeling  

A. Surrogate-based optimization 

Surrogate models, also known as metamodels or response surface models, are often used in place of the 

actual simulation code to find the local or global optimum and reduce the computational cost. The surrogate 

model can be regarded as an approximation of the objective function, which is built from a set of points called a 

design of experiment. The design of experiment and the corresponding simulations are used to construct a 

simpler mathematical model thus replacing the expensive model. 

The readers are referred to 
29–33

, for more extensive description of surrogate modeling techniques, design of 

experiment and identification of new sampling points. An overview of the most popular methods in design space 



sampling, surrogate model construction, model selection and construction and surrogate based optimization can 

be found in 
4,5

 for example. 

B. Efficient Global Optimization with Kriging and with Co-kriging 

Jones in 
18

, proposed the Efficient Global Optimization (EGO) algorithm. This algorithm can be regarded as 

a particular case of the optimization-based search formalized in 
5
 and mentioned in the previous subsection, 

where the model type is kriging. The infill criterion (choosing the new points of analysis) is to maximize the 

expected improvement 
18,29

. EGO is based on a kriging surrogate model, which starts by interpolating the initial 

set of data points. 

Kriging 
34,35

 is an interpolating method which features the observed data at all sampling points. The output of 

a deterministic computer experiment is modeled as a realization of a stochastic process 
1,36,37

, which is defined as 

the sum of a global trend function 𝐠𝑻(𝐱)𝛽 and a Gaussian process z(x) as following 

y(𝐱) =   𝐠𝑻(𝐱)𝛽 + 𝑧(𝐱)           (3) 

where 𝐠(𝐱) = [𝑔1(𝐱), 𝑔𝟐(𝐱), … , 𝑔𝒌(𝐱)]𝑇  ∊ ℝ𝑘 is defined with a set of the regression basis function, β =

[𝛽1, 𝛽𝟐, … , 𝛽𝒌]𝑇  ∊ ℝ𝑘  is an unknown vector of regression parameters and 𝑧(𝐱)   is a zero-mean stationary 

stochastic process with unknown variance  𝜎2 and the covariance  

 𝑅 = 𝑐𝑜𝑣(𝑧(𝑥), 𝑧(𝑢)) = 𝜎2𝐾(𝑥, 𝑢)           (4) 

for some known correlation function 𝐾(·) . In the application presented in section 5, we consider the popular 

Gaussian correlation function: 

𝐾(𝑥, 𝑢) = ∏ exp (−𝜃𝑘|𝑥𝑘 − 𝑢𝑘|2)

𝑛𝑝

𝑘=1

           (5) 

The mean response can be estimated for any untried point 𝑥 as 

𝑌�̂� = 𝐸{𝑌𝑥|𝑌𝑠} = 𝐠𝑥
𝑇�̂� + 𝑟𝑇𝑅−1(𝑌𝑠 − 𝐹�̂�)       (6) 

Where �̂� =  (F𝑻𝑅−𝟏F)−1F𝑇R−1𝑌𝑠  , 𝑌𝑥 = 𝑦(𝑥), F is the matrix of linear equations constructed using the 

regression function and the experimental design and  𝑌𝑠 is the column vector of length 𝑛𝑠, which contains the 

sample values of the response 

The kriging prediction variance can also be estimated by the mean-squared error of the predictor 

�̂�2(𝑥) =  𝜎2[ 1 + 𝐦𝑇(𝘍𝑇𝑅−1𝘍)−1 𝐦 −   𝑟𝑇R−1 𝑟]                (7) 

where the estimated process variance is �̂�2 =
(𝑌𝑠−𝐹�̂�)

𝑇
𝑅−1(𝑌𝑠−𝐹�̂�)

𝑛𝑠
    and  𝐦 =  F𝑇R−1𝑟 − 𝐠, 𝑟 is the vector of 

correlations between the point 𝑢 and the design of experiment points. 



      In the present paper we will not only use kriging but also a variant called co-kriging within the surrogate 

based optimization framework. Co-kriging 
28,29

 is an approximation model for complex computer codes which is 

enhanced by data from a cheaper analysis code, under the assumption that the different fidelities of the code are 

correlated. As Forrester et al. in 
28

 , we will use here the co-kriging approach with two levels of data (data from 

expensive simulations and data from cheap simulations). Note that the co-kriging framework can be extended to 

multiple code levels following the notations used in 
27

. We denote 𝑦𝑒 the values of the expensive data at points 

𝑋𝑒, 𝑦𝑐 the values of the cheap data at the points 𝑋𝑐, 𝑍𝑒(. ) a Gaussian process of the expensive code and 𝑍𝑐(. ) a 

Gaussian process of the cheap code.  

An approximation of the expensive code is given by the cheap code multiplied by a constant scaling 𝜌 plus a 

Gaussian process 𝑍𝑑(. ), which represents the difference between 𝑍𝑒(. ) and 𝜌𝑍𝑐(. ): 

𝑍𝑒(𝒙) = 𝝆𝑍𝑐(. ) + 𝑍𝑑(. )        (8) 

The co-kriging prediction of the expensive code is given for any untried point 𝑥 by 

𝑦�̂� = �̂� + 𝑐𝐶−1(𝑦 − 𝟏�̂�)       (9) 

Where �̂� =  
𝟏𝑇𝐶−1𝑦

𝟏𝑇𝐶−1𝟏
, C is the co-kriging covariance matrix, c is the vector of correlations between the point 𝑥 and 

the design points and 1 is a column vector of ones,  

The estimated mean squared error in the co-kriging prediction is calculated  

�̂�2(𝑥) =  𝜌2𝜎�̂�
2 + 𝜎�̂�

2 − 𝑐𝑇𝐶−1𝑐 +
1 − 𝟏𝑇𝐶−1𝑐

𝟏𝑇𝐶−1𝟏
               (10) 

where 𝜎�̂�
2
 is the estimated process variance of the cheap code and 𝜎�̂�

2
 is the estimated process variance of the 

difference between the expensive and cheap code. The readers are referred to [
29

, chap 8], for a more extensive 

description. 

EGO locates a new point to be sampled by maximizing some metric function EI, in order to enrich the design 

of experiments with points that are likely to perform well in terms of the objective function. This metric is based 

on the notion of “improvement” that is defined as follows. Let  yB = min𝑗=1,..,𝑛𝑠 y(𝑥𝑖) be the minimum output 

that has been evaluated after ns runs, we can define the amount of improvement at x to be zero if y(𝑥) ≥  yB (i.e 

y(𝑥) provides no improvement over yB). Similarly if y(𝑥) <  yB, the amount of improvement at x is defined as 

 yB - 𝑦(𝑥).      

We can calculate the expectation of it being an improvement on the best value calculated so far: 

𝐸𝐼 = 𝐸[𝐼(𝑥)|𝑌] = 



= {
(y𝐵 − ŷ(𝑥))  ×  𝜉 (

yB− ŷ(𝑥)

�̂�(𝑥)
) + �̂�(𝑥)  ×  𝜂 (

yB− ŷ(𝒙)

�̂�(𝒙)
)    , �̂� > 0

0, �̂� = 0
       (11) 

where ξ(.) is the cumulative distribution function (CDF), 𝜂 (.) is the probability density function (PDF) of a 

standard normal distribution and ŷ(𝑥) is the kriging or co-kriging predictor at point 𝑥. EGO iteratively adds 

points to the data set that maximizes the expected improvement 𝐸𝐼  located by a global optimization such as a 

genetic algorithm (GA). 

EGO iterates until a stopping criterion is met. Due to high computational cost, it is common to use a 

maximum number of function evaluations, a maximum allowed CPU time, a maximum number of failed 

iterative improvement trials as stopping criterion. Another alternative [
29

, chap 3] is to set a target value for the 

expected improvement, meaning the next cycle is only carried out if the expected improvement is above a certain 

threshold. 

C. Reduced basis modeling. 

Model order reduction describes different approaches that aim at significantly decreasing the computational 

burden associated with the solution of the system of equations Eq. (2) 
38,39

. A common approach for model order 

reduction, denoted as reduced basis approaches (or reduced order modeling by projection), aims at reducing the 

number of state variables of the model by projection on a certain basis. Accordingly, an approximation of the 

solution is sought in a smaller subspace Ѵ of dimension m (with usually m<<n), while enforcing the residual to 

be orthogonal to the same sub-space Ѵ. Typically, Ѵ is defined by a so called reduced-basis Φ = {Φ1,…, Φm} to 

be constructed, where Ф𝑖  𝜖 ℝ𝑛  

The initial problem of Eq. (2) is rewritten, as defined by Galerkin conditions, projected onto the reduced 

basis: 

     Ф𝑻𝐾(𝝁)Ф𝛂 = Ф𝑻𝑭    (12) 

where α are the reduced state variables, that is the coefficients of vector u expressed in the reduced basis Φ, 

𝛂 𝜖 ℝ𝑚.  

At this point it is important to realize that Eq. (12) is equivalent to a reduced order model of the initial 

problem of Eq. (2). Indeed, solving the problem of Eq. (2) typically involves the inversion of a large system of 

equations of size n, the size of the stiffness matrix 𝐾(𝝁), which for large scale problems can easily reach a size 

of hundreds of thousands. On the other hand solving the reduced order model of Eq. (12) involves the inversion 

of a much smaller system of equations of size m, the size of the projected stiffness matrix Ф𝑻𝐾(𝝁)Ф, which is 



equal to the dimensionality of the reduced basis m (typically a few dozen). Solving this reduced order model 

leads directly to α (given by α = (Ф𝑻𝐾(𝝁)Ф)−𝟏Ф𝑻𝑭), the coefficients of the solution in the reduced basis. 

The problem projected onto the reduced basis thus yields an approximate solution 𝑈𝑅𝐵 = Ф𝛂 whose 

accuracy can be quantified by measuring the following error estimator, based on the residual: 

𝑒𝑟𝑏
2 =

‖𝐾(𝝁)Ф𝛂 − 𝑭‖2
2

‖𝑭‖2
2                                 (13) 

Note that computing this error metric only involves matrix-vector products and differences, its computational 

cost will thus be negligible compared to solving the full system of equations, especially when the size n of the 

problem increases. 

Up to now, the subspace Ѵ on which the problem is projected, or more precisely one of its basis Φ, was not 

specified and many different choices are possible for this projection.  

For example, eigenmodes of the operators have been used to reduce numerically the size of the problems for 

applications in dynamics. These approaches are known as modal analysis, Craig-Bampton 
40

. In 
41,42

 the reuse of 

Krylov subspaces generated during Krylov iterative solvers was used as a reduced basis. The generalized modes 

of variables separation techniques (like Proper Generalized Decomposition) can also be used in such a context 
43

. 

Greedy approaches have also been proposed for constructing reduced basis models based on enriching the basis 

with the sample maximizing the reduced basis error 
44

.  

The Proper Orthogonal Decomposition (POD) can also be a way to build a relevant reduced basis in the 

context of reduced order modeling by projection 
41,45–47

. Indeed, POD 
48

  (also known as Karhunen Loeve 

decomposition 
49

 or principal component analysis 
50

) is an approach which consists in constructing a reduced 

basis from a set of solutions, called snapshots. Mathematically, the extraction of the reduced basis from the 

snapshots is done by Singular Value Decomposition (SVD) which is relatively stable numerically. Generally, the 

snapshots are the results of full simulations on a set of points.  

In this paper an alternative on the fly reduced basis construction method is used. This approach consists in 

using all the simulations for which the full solution (i.e. the result of the inversion of the full system of Eq. (2)) 

was computed for constructing the reduced basis. The approach is denoted as on the fly since it works all along 

the optimization process and constructs the reduced basis sequentially as more full solutions become available. 

Each time a new full solution is available, this solution is first orthonormalized with respect to the already 

existing vectors of the reduced basis and then added to the basis. Note that our proposed approach is not the 

same as an SVD on the full set of snapshots, due to the fact that we aim at constructing the basis iteratively on 



the fly. We found that our proposed approach leads to a very similar basis size (to one or two elements close) as 

applying SVD directly on the full set of snapshots.  

Finally, note that, both for the construction of the reduced basis model and for the estimation of the error 

criterion (Eq. 13) the system matrix K usually needs to be assembled. The assembly time is in general non 

negligible, however, compared to solving the system once the matrix is assembled, it gets smaller and smaller as 

the size of the system increases. Furthermore, the assembly can be easily parallelized on multiple cores, with a 

parallel for loop. Alternatively assembly free element-by-element computation of the error estimator is also 

possible. This means that the reduced basis model can be very efficient at calculating an approximate solution of 

the problem.  

IV. Reduced basis surrogate based optimization (RBSBO). 

A. General concept 

We propose here a framework for coupling surrogate based optimization with reduced basis modeling to 

significantly reduce the cost of the optimization.  

The interest of such a coupling is double. First, not all the points of the initial design of experiments 

necessarily require to be evaluated using the full simulations. Some points may be computed using a reduced 

order model, while still maintaining acceptable accuracy. Second, the reduced order models also have high 

potential of benefiting the infill phase of surrogate based optimization. Indeed the infill points are either close to 

the predicted optimum, in which case the reduced order model is likely to have good accuracy, since points in 

immediate vicinity have previously been calculated (using either the full or reduced order models). The other 

option for infill points is to have them in areas with high potential of improvement, generally areas with sparse 

points. Due to the sparsity of surrounding points the accuracy of the reduced order calculation at the new infill 

point may be lower but this is likely to be acceptable since at this type of infill points the first objective is to 

reduce the variance of the prediction, which can be achieved even with a quite rough approximation. Compared 

to standard surrogate based optimization our method has the advantage that only a fraction of full numerical 

model resolutions is required. At the majority of the initial sampling or iteration points, only the inexpensive 

reduced basis solution needs to be computed. 

Fig 1 provides the flowchart of the general process of the proposed procedure.  

In the first two steps, after the problem definition, the set of points representing the initial design of 

experiment is defined. This set of points will serve both for the initial reduced basis extraction as well as for 



building the initial surrogate model. A surrogate model is then fitted in step 4 using the response of full and 

reduced basis simulations. The fitted surrogate model is then used to identify the points where the next 

simulation needs to be performed (i.e. the next infill point). At that point, the response of the reduced basis 

model is calculated.  

Based on a criterion on the accuracy of the reduced basis model a decision is taken whether to run a full 

simulation at the next infill point or whether a reduced basis solution is sufficient. Two criteria will be proposed 

in the next subsections.  

 

 

 

 

 

 

 

 

 

 

 

                        

    

                                                                                                                       

 

 

 

 

  

                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flowchart of the proposed adaptive reduced basis surrogate based optimization 
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B.  Key Points Efficient Reduced Basis Global Optimization (KPERBGO) 

 We propose in this subsection the efficient reduced basis global optimization (KPERBGO) algorithm 

implementing the framework described above. The proposed algorithm is based on EGO, thus uses kriging as the 

surrogate model and expected improvement as infill criterion. For the reduced basis construction we chose an 

approach inspired from 
51

 called key points approach. This approach allows to sequentially construct a set of 

points 𝒦 which will serve for obtaining the basis vectors. The algorithm of the proposed KPERBGO approach is 

provided in Algorithm 1 below. 

Algorithm 1: KPERBGO Algorithm  

 

1:     Create DoE  D = {𝝁𝒊} 

2:     𝒖 ← solution of 𝑲(𝝁𝟏)𝒖 = 𝑭 

3:     Reduced basis initialization: Ф = 𝒖 /‖𝒖‖𝟐  

4:     𝒀𝒐𝒃𝒋[ 1 ] ← 𝒇𝒐𝒃𝒋(𝒖; 𝝁𝟏) 

5:     for i ϵ remains points of D do 

6:         𝛂 ← solution of Ф𝑻𝑲(𝝁𝒊)Ф𝛂 = Ф𝑻𝑭 

7:         𝒖 ← Ф𝛂  
8:         𝒆𝒓𝒃 ← ‖𝑲(𝝁)Ф𝛂 − 𝑭‖𝟐/‖𝑭‖𝟐  

9:         if 𝒆𝒓𝒃 > 𝜺𝒓𝒃 then 

10:           𝒖 ← solution of 𝑲(𝝁𝒊)𝒖 = 𝑭  

11:           𝒖𝒐𝒓𝒕 ← 𝒖 −  Ф(Ф𝑻𝒖)  

12:           New key point 𝝁𝒊 ϵ 𝒦 and reduced basis enrichment: Ф ← {Ф, 𝒖𝒐𝒓𝒕/‖𝒖𝒐𝒓𝒕‖𝟐} 

13:       end if 

14:       𝒀𝒐𝒃𝒋[ i ] ← 𝒇𝒐𝒃𝒋(𝒖; 𝝁𝒊) 

15:   end for  

16:   while convergence not reached 

17:       Fit kriging model to available data (D, 𝒀𝒐𝒃𝒋) 

18:       β ← 𝒂𝒓𝒈𝒎𝒂𝒙µ 𝐸𝐼(µ) 

19:       𝛂 ← solution of Ф𝑻𝑲(𝛃)Ф𝛂 = Ф𝑻𝑭  

20:       𝒖 ← Ф𝛂   
21:       𝒆𝒓𝒃 ← ‖𝑲(𝛃)Ф𝛂 − 𝑭‖𝟐/‖𝑭‖𝟐  

22:       if 𝒆𝒓𝒃 > 𝜺𝒓𝒃 then 

23:            𝒖 ← solution of 𝑲(𝛃)𝒖 = 𝑭 

24:            𝒖𝒐𝒓𝒕  ←  𝒖 −  Ф(Ф𝑻𝒖)  
25:            New key point β ϵ 𝒦 and reduced basis enrichment: Ф ← {Ф, 𝒖𝒐𝒓𝒕/‖𝒖𝒐𝒓𝒕‖𝟐} 

26:       end if 

27:       D ← D U β 

28:       𝒀𝒐𝒃𝒋 ← 𝒀𝒐𝒃𝒋 U 𝒇𝒐𝒃𝒋(𝒖 ; β) 

29 :   end while 

30:    𝒚∗ ← min (𝒀𝒐𝒃𝒋 )  

 

The algorithm is divided in two main phases. The first one (lines 1-15) corresponds to the construction of the 

initial kriging model of the objective function. The second one (lines 16-29) corresponds to the iterations for 

enriching the kriging model and the reduced basis in order to find the global optimum. 

For the first phase corresponding to the construction of the initial kriging model the implementation is based 

on the key points approach 
51

, which is briefly summarized below.  



For the first point, 𝝁1, of the DoE, the full simulation always needs to be carried out and its result, 𝒖1,  

becomes the first vector of the reduced basis. Then at the point 𝝁𝑖 it is assumed that one has already a reduced 

basis of size 𝑚𝑖. The problem for parameter 𝝁𝑖 is then solved by projection on this reduced basis. This 

corresponds to the inversion of a small system of size 𝑚𝑖, whose computational cost is low compared to that of 

the full simulation. The accuracy of the approximate solution thus constructed is evaluated with a measure of the 

residual error 𝑒𝑟𝑏  in Eq. (13). If this indicator is below a certain threshold 𝜀𝑟𝑏, then the quality of the reduced 

basis solution is considered sufficient and we move on to the next parameter 𝝁𝑖+1. Otherwise, the complete 

problem is solved for this point and the associated solution is orthogonalized using the Gram-Schmidt 

orthogonalization as shown in Eq. (14), normalized as shown in Eq. (15) and added to the basis. 

Ф𝑘 = 𝑢𝑘 − ∑ 〈𝑢𝑘, Ф𝑖〉Ф𝑖
𝑘−1
𝑖=1                (14) 

Ф𝑘 = Ф𝑘/‖Ф𝑘‖                                        (15) 

where 〈. , . 〉 denotes the L
2
 scalar product. 

Not that the basis is constructed on the fly, the basis size will thus be determined by the satisfaction of the 

threshold on the residual error estimator of Eq. (13). 

The second phase of Algorithm 1 corresponds to the infill criterion for enriching the model. At each cycle 

KPERBGO iteratively adds the point β that maximizes the corresponding expected improvement to the DoE. 

However, unlike traditional EGO, at each additional point β, KPERBGO first uses the reduced order model to 

calculate the response. If this response meets a prescribed accuracy level, assessed by the residuals error 𝑒𝑟𝑏   

being below a certain threshold 𝜀𝑟𝑏 (see Eq. (13)), then this reduced basis solution is used in place of the full 

solution. Otherwise (if the response does not meet the prescribed threshold 𝜀𝑟𝑏 on the residuals error 𝑒𝑟𝑏) the full 

problem is solved for this point β and the associated solution is orthogonalized as shown in Eq. (14), normalized 

as shown in Eq. (15) and added to the basis, thus enriching the reduced basis. KPERBGO iterates until a 

convergence stopping criterion is met. 

In the proposed KPERBGO approach, reduced basis solutions are thus used at two different phases: during 

the evaluation of the responses of the initial design of experiments and during the evaluation of points of the 

infill phase, that maximize the expected improvement. The KPERBGO approach adaptively choses between 

using a full simulation or reduced basis one at each step. Since the computational time of the reduced basis 

solution is significantly lower than that of a full solution, the approach has the potential of major acceleration of 

the optimization. Note that KPERBGO, like EGO, seeks to make a trade-off between exploration of new areas of 

the design space and exploitation of the areas near the present best point for determining the global optimum. 



The exploration phase is characterized by large model uncertainty thus it is pertinent to use a coarse reduced 

basis model first in these areas in order to reduce the large kriging model uncertainty. The exploitation phase on 

the other hand is characterized by a close vicinity to already carried out full simulations, the reduced basis model 

is thus likely to be quite accurate in this vicinity. Furthermore for both exploration and exploitation in case that 

the reduced basis model is not sufficiently accurate based on the error estimator of Eq. (13) the proposed 

approach will run a new full simulation and enrich the reduced basis with this result.  

Note also that the KPERBGO approach uses the error metric of Eq. (13) to determine whether a reduced 

basis solution is sufficient. Based on our experience this error metric will be sufficient for a wide variety of 

problems, but there may be situations where this may be insufficient, for example for local minima lying far 

away in the design variable space but extremely close in terms of objective function value. 

Finally, note that due to the use of reduced basis models even when close to the optimum, KPERBGO may 

not be able to converge to the same level as EGO but may be limited to the accuracy of the reduced basis model 

in the vicinity of the optimum. The examples provided in the application section show that this accuracy is 

usually sufficient for engineering purposes. Furthermore this algorithm is more efficient in terms of uses of the 

full solutions. However, in cases where the user needs to precisely control the convergence precision of 

KPERBGO, we suggest to use the Key Points Efficient Reduced Basis Global Optimization with Terminal 

Enrichment (KPERBGOTE) described in the next subsection. This algorithm comes at the expense of using a 

somewhat larger number of full solutions but allows precise convergence control. 

C. Key Points Efficient Reduced Basis Global Optimization with Terminal Enrichment (KPERBGOTE) 

To control the convergence precision of KPERBGO, we propose to use full numerical simulation when the 

next point may be close to the optimum solution. To do that, we use the full model when the response does not 

meet the prescribed threshold 𝜀𝑟𝑏 on the residuals error 𝑒𝑟𝑏 or when the next point is located at a certain distance 

to the best point so far. We call this approach key point Key Points Efficient Reduced Basis Global Optimization 

with terminal enrichment (KPERBGOTE). In this approach, we define a radius given as follows: 

𝑅 = 𝑘 ∗ 𝑑                (16)   

where 𝑘 is a constant given by the user according to the problem to be solved and 𝑑 represent the distance 

between the best point so far and its nearest neighbor. Note that k=1 works generally well and this is the value 

that was used on our problems.  

KPERBGOTE proceeds in the following manner: as EGO and KPERBGO, at each cycle, it iteratively adds the 

point that maximizes the corresponding expected improvement within the DoE. At this point, KPERBGOTE first 



checks whether the new point is located inside the ball of radius 𝑅 in which case the full solution is calculated 

and used at this point. Otherwise, the reduced order model is evaluated and the algorithm proceeds similarly to 

KPERBGO by checking if this response meets a prescribed accuracy level, assessed by the residuals error 𝑒𝑟𝑏   

being below a certain threshold 𝜀𝑟𝑏 (see Eq. (13)), in which case the reduced basis solution is used in place of the 

full solution. If the threshold on the accuracy is not satisfied the full problem is solved for this point and the 

associated solution is orthogonalized as shown in Eq. (14), normalized as shown in Eq. (15) and added to the 

basis, thus enriching the reduced basis. KPERBGOTE iterates until a convergence stopping criterion is met.  

D. Key Points Efficient Co-kriging Global Optimization (KPECGO) 

In this subsection, we describe the co-kriging version of the proposed approach, that we call Key Points 

Efficient Co-kriging Global Optimization approach (KPECGO). This approach differs from the KPERBGO 

approach in two ways.  

First, the co-kriging is used in place of kriging. We have two different fidelity models: the high fidelity 

model represented by the full numerical model and the low fidelity model represented by the reduced order 

model. After reduced basis initialization, a first initial co-kriging is built based on a design of experiment and 

key point approach 
51

. The point that maximizes the expected improvement is selected, the response of the 

reduced order model is calculated and the data is added to the data correspond to the cheap code. 

Second, unlike in the KPERBGO approach, the criterion used to know if a full model is required is not based 

on a threshold but based on a quantile defined on the intrinsic error estimate of the co-kriging surrogate. We 

denote 𝑓𝑅𝐵(𝑥𝑛𝑒𝑤) the response of the reduced order model and 𝑑(𝑥𝑛𝑒𝑤) the error estimation at xnew of the co-

kriging model (d being itself modeled by a Gaussian process, see 
27,28

), i.e. the estimation of the difference 

between the full model and the reduced order model. At the point at which the expected improvement is 

maximum, we calculate an approximation of the expensive code given by 𝑓𝑡𝑟𝑢𝑒(𝑥𝑛𝑒𝑤) ≈ 𝑓𝑅𝐵(𝑥𝑛𝑒𝑤) + 𝑑(𝑥𝑛𝑒𝑤). 

Note that since d(x) is a Gaussian process, 𝑓𝑡𝑟𝑢𝑒(𝑥𝑛𝑒𝑤)  is a normally distributed random variable. If the p-

quantile of 𝑓𝑡𝑟𝑢𝑒(𝑥𝑛𝑒𝑤) is lower than the best response value so far, the full problem is solved for this point and 

the data is added to the data corresponding to the expensive code. The co-kriging model is updated using both 

cheap data and available expensive data. The KPECGO iterates until a convergence stopping criterion is met.  

The interpretation of this criterion of using a reduced basis simulation at a given point is that there is a high 

chance that the true value of the model will be better than the present best point, thus a full simulation is 

executed at this point. Note that the value p of the quantile can be tuned for a trade-off between increasing 



accuracy during the exploration or limiting high accuracy only to the exploitation phase of the infill phase. In the 

present paper we used the 0.05-quantile (p=0.05). 

V. Application to maximum stiffness design of laminated composite plates 

Optimum design of composite laminates has been addressed by multiple researchers over the past decades. 

We refer the reader to the review paper by Venkataraman and Haftka 
52

 for an overview of some of the topics 

addressed. In terms of maximum stiffness design (i.e. finding the optimal stacking sequence which maximizes 

the stiffness of the laminate) the lamination parameters approach 
53

 has turned out to be a powerful approach 

allowing to avoid carrying out global optimization directly using expensive finite element models, by decoupling 

the optimization problem. However, stiffness optimization using the lamination parameters approach has some 

limitations in handling arbitrary layups as discussed by 
54,55

. In particular treating general non-symmetric 

laminates are still problematic. The present section addresses the problem of maximum stiffness design, first on 

some benchmark problems, then on general non-symmetric laminates under complex loading. 

A. Description of the problem 

In the present section we apply the key point efficient reduced basis global optimization described in section 

IV.B to stiffness maximization of composite laminates. Minimization of the strain energy U, which is equivalent 

to the criterion of maximum stiffness, is selected as the optimality criterion. The optimization problem is written 

in the following mathematical form: 

min
𝜃

𝑈(𝜃) 

                                              𝐾𝒖 = 𝑭                                                (17) 

      −90 ≤ 𝜃𝑖 ≤ 90 𝑑𝑒𝑔,       𝑖 = 1,2, … , 𝑁𝑉 

where 𝜃 is the vector of the ply orientations which is explicitly given by 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑁𝑉)𝑇and NV the 

number of variables. For symmetric ply layups, 𝑁𝑉 = 𝑁𝐿/2, where NL the number of layers. In the general case 

(non-symmetric) NV=NL. Denoting the assembled structural stiffness matrix as K and the nodal unknowns 

vector as u, the strain energy U is written as: 

                                                                 𝑈(𝜃) =
1

2
𝒖𝑇𝐾𝒖                                                   (18) 

The governing equilibrium equations 𝐾𝒖 = 𝑭 are solved with a Matlab based in-house finite element solver. 

We used four-node Mindlin shell element with five degrees of freedom per node with a shear correction factor 

computed according to 
56

. We consider two possible materials for the laminate, whose ply-elastic constants are 

provided in Table 1. The two materials considered are representative of high and medium orthotropy composites. 



Table 1. Material properties 

Parameter E1(GPa) E2(GPa)  ν21  G12 (GPa) 

Material-1  181  10.3  0.28     7.17 

Material-2  260  140  0.3      60 

 

B.  Key Point Efficient Reduced Basis Global Optimization implementation 

 The present subsection provides the implementation of the optimal design of orthotropic structures using the 

proposed KPERBGO approach. 

In the first step, the design of experiments is defined. We use here a Latin hypercube sampling 
57

 or full 

factorial design (with different number of samples depending on the size NV of the problem) within the bounds 

−90 ≤ 𝜃𝑖 ≤ 90 ,    𝑖 = 1,2, … , 𝑁𝑉 where NV is the number of variables.  

In the second step the key points approach (section IV.B) is applied with an error criterion 𝑒𝑟𝑏 to construct 

the initial reduced basis. The algorithm solves exactly the finite element problem with the parameters of the first 

point of the DoE and adds the solution vector to the basis used for the reduced order modeling.  It then solves the 

second experiment by projection on this basis and checks if the residual error is higher than the considered 

threshold. Obviously only one vector for the reduced basis is insufficient to capture the variations of the 

displacement field for this problem. In this case the full problem is solved for experiment 2 and the resulting 

displacement vector is added to the reduced basis. The approach continues sequentially with the following points 

until the end of the DoE. Each experiment point is first solved projected on the reduced basis. If the 

corresponding residual is lower than the considered threshold the algorithm moves to the next DoE point. 

Otherwise the current point is added to the key points, meaning that the full problem is solved and the reduced 

basis is enriched by this key point. 

The third step consists in fitting a kriging model to the objective function of Eq. (18) and the corresponding 

output. The point that maximizes the expected improvement is then selected as the next point to be computed. 

The reduced order model is first used to calculate the response approximation at this point. If the residual 

measure defined by Eq. (13) is lower than the imposed threshold, the kriging model is updated using this 

approximate solution. Otherwise, the full numerical solution is calculated at this point and the corresponding 

output is used to enrich the basis and update the kriging model. 

KPERBGO iterates until the maximum number of cycles (simulations including both the full numerical 

model and reduced order model) is met.  

 



C.  The Key Point Efficient Reduced Basis Global Optimization (KPERBGO) results 

 The optimal design of orthotropic structures presented in section V.A is now applied on several test 

problems to compare the performance of the proposed approach. 

1. Symmetric multi-layered laminated plate 

In this subsection we investigate the optimal layups of symmetrically laminated composite plates subject to 

different loading conditions.  

 

 Simply supported square plate under uniformly distributed pressure loading  

 

To begin with, we consider some test problems for which the optimal solution is known in order to illustrate 

and compare the capabilities of the method. We consider a square, simply supported plate under a uniformly 

distributed pressure distribution (cf. Figure 2). We consider symmetric 4, 6 and 8 ply laminates, which 

respectively involve 2, 3 and 4 design variables. The objective function for the symmetric 4 ply laminate is 

provided in Figure 3 in terms of the two angles 𝜃1 and 𝜃2. 

 

 

 

 

 

 

 

                                 

 

 

 

Figure 2. Laminate under uniformly distributed pressure with simply supported (SS) sides 

 

Figure 3. Contours of the objective function (compliance) for the four-ply symmetric laminate as a 

function of the two design variables. 
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Table 2 provides the optimum layup obtained for the simply supported uniformly distributed problem using 

different adaptive surrogate model based global optimization approaches. We first provide the reference solution 

from 
58

.  We then provide solutions obtained using the EGO and KPERBGO methods (with 𝑒𝑟𝑏 = 10−3 and 

10−2 ). The error compared to the reference solution (given in %) as expressed in Eq. (16) is also provided in 

Table 2.  

𝐸𝑟𝑟 =
𝑓𝑜𝑏𝑗

𝑎𝑝𝑝𝑟𝑜𝑥
−𝑓𝑜𝑏𝑗

𝑒𝑥𝑎𝑐𝑡

𝑓𝑜𝑏𝑗
𝑒𝑥𝑎𝑐𝑡 ∗ 100                       (19) 

where 𝑓𝑜𝑏𝑗
𝑎𝑝𝑝𝑟𝑜𝑥

  represents the kriging approximation value of the objective function (stain energy) at the optimal 

design and  𝑓𝑜𝑏𝑗
𝑎𝑥𝑎𝑐𝑡 represents the true value of the objective function at the optimal design. 

Table 2.  Optimum ply arrangement for square, symmetric multi-layered plate (Material-1), simply supported 

and subject to uniformly distributed pressure loading. 

 Reference solution 
58

  EGO Results 

NL 𝜃∗  𝜃∗ Err (Eq. 19) 

4 [45, −45]𝑠  [44,9, −45,0]𝑠 2.68*10−6 

6 [45, −45, −45]𝑠  [44.9, −45.0, −45.7]𝑠 2.69*10−4 

8 [45, −45, −45, −45]𝑠  [45.2, −44.8, −45.3, −45.2]𝑠 7.81*10−4 

 
KPERBGO (𝑒𝑟𝑏 = 10−3 )  KPERBGO (𝑒𝑟𝑏 = 10−2 ) 

NL 𝜃∗ Err  𝜃∗ Err (Eq. 19) 

4 [44.9, −44.9]𝑠 1.82*10−5  [45.0, −45,5]𝑠 2.57*10−3 

6 [45.2, −45.1, −45.3]𝑠 1.51*10−3  [44.6, −45.0, −44.7]𝑠 4.71*10−3 

8 [45.0, −44.5, −45.2, −45.5]𝑠 1.84*10−3  [45.2, −44.7, −44.8, −45.2]𝑠 1.91*10−3 

 

The EGO and KPERBGO solutions agree very well with the reference solution in both test cases, i.e. for 

engineering purposes there is almost no accuracy penalty here for using the reduced basis approach (KPERBGO) 

compared to the EGO approach that always uses the full solutions.  

It is important to note that even though the error in the objective function (Err) is very small there is 

nevertheless a 1 to 3 orders of magnitude difference between the error of EGO and that of KPERBGO. This 

difference is due to the reduced basis model that is used, and which allows the KPERBGO algorithm to converge 

only up to the reduced basis model accuracy in the vicinity of the optimum. In the context of stiffness 

optimization this accuracy can be considered sufficient for engineering purposes. In case the accuracy is not 

considered sufficient and the user needs to precisely control the convergence precision, we recommend using the 

KPERBGOTE algorithm, which includes convergence control, at the expense of slightly more full solutions. 



The results of KPERBGOTE applied to this same problem with 𝑒𝑟𝑏 = 10−3 are provided for comparison 

purposes in Table 3. We can note that using the terminal enrichment we can reach roughly the same convergence 

as in EGO. 

Table 3.  Optimum ply arrangement for square, symmetric multi-layered plate (Material-1), 

simply supported and subject to uniformly distributed pressure loading with KPERBGOTE 

Reference Solution  KPERBGOTE (𝑒𝑟𝑏 = 10−3 ) 

𝜃∗  𝜃∗        Err (Eq. 19) 

[45, −45]𝑠  [44.9, −44,9]𝑠 3.19*10−6 

[45, −45, −45]𝑠  [44.9, −44.8, −45.2]𝑠 6.43*10−4 

[45, −45, −45, −45]𝑠  [45.1, −45.3, −44.8, −45.0]𝑠 8.53*10−4 

 

We provide in Table 4 some elements to compare the numerical efficiency of KPERBGO and EGO. The first 

column provides the number of layers, the second column the number of full systems using EGO and the third 

and fourth columns the number of reduced order models using KPERBGO (with 𝑒𝑟𝑏 = 10−3 and 𝑒𝑟𝑏 = 10−2 

respectively).  The fifth and sixth columns provide the size of the reduced basis i.e. the number of full systems 

using KPERBGO (with 𝑒𝑟𝑏 = 10−3 and 𝑒𝑟𝑏 = 10−2 respectively ). The last two columns provide the ratio of 

the computational (CPU) time of the EGO algorithm to the computational (CPU) time of the KPERBGO 

algorithm, i.e. the speedup that was achieved by using the proposed method over the classical EGO approach. 

Table 4. Numerical efficiency comparison of EGO and KPERBGO for square symmetric multi-

layered plate, simply supported and uniformly distributed loading. 

NL Number 

of full 

systems 

EGO 

Number of 

projected 

systems, 

𝑒𝑟𝑏 = 10−3 
KPERBGO  

Number of 

projected 

systems , 

𝑒𝑟𝑏 = 10−2 
KPERBGO 

Size of 

reduced basis 

(full systems 

KPERBGO), 

𝑒𝑟𝑏 = 10−3 

Size of 

reduced basis 

(full systems 

KPERBGO), 

𝑒𝑟𝑏 = 10−2 

Computationa

l speed-up, 

𝑒𝑟𝑏 = 10−3  

Computationa

l speed-up, 

𝑒𝑟𝑏 = 10−2  

4 110 84 98 26 12 3.8 8.4 

6 160 133 149 27 11 5.3 12.9 

8 360 335 350 25 10 12.4 32.7 

 

Similarly, we provide in Table 5 the same comparison items for the KPERBGOTE strategy. We note that the 

accurate convergence control of this strategy had its toll on the number of full simulations, and thus on the 

efficiency of the method. Depending on the problem under consideration, the user will have to make a choice 

between accurate convergence control and lower numerical efficiency and more relaxed convergence control but 

higher efficiency. For the present stiffness optimization we consider that the KPERBGO convergence is 

sufficient for the relevant engineering purpose and we will use only this algorithm in the subsequent stiffness 

optimization problems.  



Table 5. Numerical efficiency comparison of the EGO and KPERBGOTE algorithm for a square 

symmetric multi-layered plate (Material-1), simply supported and uniformly distributed loading 

NL Number of full 

systems EGO 

Number of projected 

systems KPERBGOTE, 

𝑒𝑟𝑏 = 3 

Size of the reduced basis (full 

systems KPERBGOTE), 

𝑒𝑟𝑏 = 10−3 

Computational speed-up, 

𝑒𝑟𝑏 = 10−3  

4 110 76 34 2.9 

6 160 124 36 4.0 

8 360 323 37 8.8 

 

To illustrate further how the KPERBGO approach works, we analyze in Figure 4 the evolution of the residual 

throughout the optimization process in the case of the eight-ply laminate. A similar analysis can be done for the 

other ply arrangements. At the beginning of the optimization the residuals are relatively high, meaning that the 

full numerical solutions need to be calculated. We can explain this behavior by the fact that a minimum basis 

size is required to have good accuracy of the reduced basis solution. Once this critical basis size is reached the 

residuals go below the residuals threshold, represented by the red horizontal line in Figure 4, meaning that the 

reduced basis solution is used in place of the full solution. Throughout the KPERBGO optimization process, at a 

small number of simulations, the residuals exceed the threshold again implying that the full solutions need to be 

computed and the reduced basis updated.  

 

Figure 4. Plot of the residuals values with the number of simulation for square symmetric eight layered 

plate, simply supported and uniformly distributed loading with 𝒆𝒓𝒃 = 𝟏𝟎−𝟐 

 

For the EGO algorithm, the simulations consist in computing a full resolution for each experiment of the 

DoE and the point selected at each infill cycle. For the KPERBGO, only a small number (equal to the size of the 

reduced basis) of the full numerical solutions are calculated. At the majority of points (number of projected 

systems), the reduced order model, with negligible computational cost, is used.  This leads to significant speed-



ups of the KPERBGO approach over the EGO approach. Note that the KPERBGO, compared to the EGO 

algorithm, is more efficient with larger size finite element problems since the inversion of the system of 

equations takes longer. Also note that the total computational time depends not only on the system inversion but 

also both on the stiffness matrix assembly and on the kriging model construction. The kriging construction and 

updating time will be relatively small if the number of design variables remains reasonable (less than a dozen). 

The stiffness matrix assembly can be computationally quite expensive, roughly of the same order as the system 

solving time. However the assembly is very easy to parallelize on multiple cores with a simple parallel “for” 

loop, unlike the solving of the system, which would require more complex domain decomposition methods to do 

so. With parallel assembly the time of the stiffness matrix, assembly quickly becomes negligible compared to the 

system resolution time. 

Replacing the finite element model by a surrogate leads to negligible surrogate evaluation cost so that the 

entire computational cost lies in the surrogate construction and updating. In our case, using the classical EGO 

approach the optimization with eight layers required 360 full numerical solutions while using the proposed 

approach with 𝑒𝑟𝑏 = 10−2 involved only 10 full numerical solutions. At the other points reduced order models 

were used, thus drastically reducing the computational cost compared to the EGO algorithm. 

 Note that the computational speed-up provided in Table 5 is based on the CPU time, including any overhead 

costs compared to considering only the solution of the finite element and reduced basis models. When the size n 

of the finite element problem increases, the overhead cost will tend to zero for reduced basis sizes of up to a few 

dozen vectors, which is typical of reduced basis solutions for a large variety of problems. With negligible 

overhead cost, the speed-up would be even greater, equaling the ratio of total solutions over full system 

solutions. 

As a final note we also compare how our proposed approach would compare against an evolutionary global 

optimization algorithm performed on a static kriging approximation of this problem with and without use of 

reduced basis modeling. This would be a classic surrogate based approximation framework with the notable 

distinction that the kriging metamodel is also constructed using reduced basis modeling (see key points 

approach
51

).  

To build the kriging metamodel of the objective function of the four-ply laminate problem, we use a Latin 

Hypercube Sampling of size 2000. For the optimization we use a differential evolution global optimization 

proposed by Storn 
59

. We obtain [45.7, −44.8]𝑠 as solution with relative error of 0.01% compared to the 

reference solution (see first column of Table 2). Second we built a static kriging model of the objective function 



in conjunction with reduced basis modeling using the key point approach with 𝑒𝑟𝑏 = 10−3. Using the same 

differential evolution algorithm we obtain[46.1, −45.2]𝑠 as solution with a relative error of 0.03%, 44 full model 

evaluations and 1974 reduced order model evaluations. We can note that, even though a very large design of 

experiments was used, the solutions are significantly less converged than using EGO types algorithms (we have 

a relative error in the objective function which is between one and four orders of magnitude higher here). Indeed 

for this type of problems EGO allows to be more economical in the choice of points that really need to be 

executed. While reduced basis modeling using the key points approach allows a significant gain over the 

traditional kriging construction, the surrogate based evolutionary optimization is still much more greedy for this 

type of problems than the proposed KPERBGO and KPERBGOTE approaches. 

 

 Plate with hole 

A similar investigation was carried out using a more complex structure and loading conditions, for which no 

existing solutions could be found by the authors. We considered a plate with a hole, clamped on one side and 

subject to uniformly distributed pressure on the top and in-plane shear loading on the side opposite to the 

clamping (cf. Figure 5). We will first consider a symmetric laminate, after which we will investigate the more 

complex case of a non-symmetric laminate with variable number of plies. Note that in the latter case, the 

arbitrary stacking sequence (non-symmetric) of the laminate renders the problem quite difficult to solve, in 

particular preventing the traditional decoupling approach based on lamination parameters 
53

, that the majority of 

previous works employed. 

 

 

 

 

 

 

                                 

 

 

 

Figure 5. Boundary conditions and loading for the plate with a hole problem 

To begin with and illustrate graphically the behavior of the proposed approach we start with a low-

dimensional problem involving a symmetric plate with four plies (thus involving only two design variables). The 

corresponding maximum stiffness objective function involves two minima, a local one and a global one (cf. 

contour plots in Figure 6). Note that the two minima, corresponding to inverting the laminate stacking sequence, 



do not have the same objective function value (stiffness) due to the non-symmetry in the loading conditions. The 

shear loading on the edge, combined with bending-extension coupling due to the non-symmetry of the laminate 

leads to one of the two minima to have a lower stiffness than the other. Considering the presence of local 

minima, the problem is thus well suited for being solved by EGO-type algorithms.  

Figure 6 shows the first fifty simulations on the test function for both the EGO and KPERBGO approaches. 

The black circles are the initial samples of 9 points (initial design of experiments) and the red circles the 

additional points chosen by the expected improvement maximization. The filled circles represent the full 

numerical solution and the hollow circles the solutions obtained using the reduced order model. For the EGO 

algorithm (Figure 6.a) all the infill points are full simulations. On the other hand for KPERBGO (Figure 6.b) 

most of the infill points were calculated with the reduced order model, thus leading to a significant 

computational cost reduction. The reason why the reduced basis approach works well is that EGO type 

algorithms have an exploitation phase where the infill points will be clustered around a local or global minimum. 

For these points, which are quite close to each other, the reduced basis model will tend to work quite well since a 

full solution was calculated for a point in close vicinity, the solution projected on the reduced basis will thus be 

sufficiently accurate.  

 
                                            a)   EGO                                                           b) KPERBGO 

Figure 6. Contours of the kriging objective function with the initial sample (black circles) and the first 

forty-one points selected by the expected improvement maximization (red circles): a) EGO approach b) 

the proposed KPERBGO approach with erb = 𝟓 ∗ 𝟏𝟎−𝟐. Hollow circles denote reduced basis simulations. 

 

Tables 6 presents the optimum results for laminates with an increasing number of plies using EGO and 

KPERBGO with 𝑒𝑟𝑏 = 5 ∗ 10−2. Comparing both the ply layup and the difference in objective function we can 

note that the KPERBGO solution agrees very well with the EGO solution for any engineering purposes. Note 

however that both EGO and KPERBGO provide approximate solutions and since we do not know the true 

optimum it is not possible to validate the approach on this example. KPERBGO would in particularly suffer 

from the same limitations as EGO in terms of finding the global optimum, thus we do not recommend to apply 



the KPERBGO algorithm to problems unsuited for EGO (e.g. high dimensional problems, discontinuous 

objective functions, etc.). For problems suited for EGO, KPERBGO can however speed-up the solution as shown 

in Table 7, while remaining very close to the EGO solution. On this test case the solutions, for engineering 

purposes, are considered equivalent but if one seeks tighter convergence control, one could also apply the 

KPERGOTE algorithm to the problem. 

Table 6. Optimum ply arrangement for symmetric multi-layered plate with a hole (Material-1) 

 EGO  KPERBGO (𝑒𝑟𝑏 = 5 ∗ 10−2 ) 

NL 𝜃∗  𝜃∗ Err KPERBGO to EGO  

4 [42.8, −43.2]𝑠  [42.8, −43,1]𝑠 0.0052 

6 [43.2, −43.2, −65.6]𝑠  [43.2, −43.3, −65.3]𝑠 0.0028 

8 [44.1, −39.1, −69.5, −69.8]𝑠  [44.2, −39.2, −69.7, −69.6]𝑠 0.0184 

 

We provide in Table 7 the ratio of the computational times of the EGO algorithm, to the total computational 

times of KPERBGO. i.e. the speedup that was achieved by using the proposed method over the classical EGO 

approach. 

Table 7. Numerical efficiency comparison of the EGO and KPERBGO algorithm for a square 

symmetric multi-layered plate with hole 

NL Number of full 

systems EGO 

Number of projected 

systems KPERBGO, 

𝑒𝑟𝑏 = 5 ∗ 10−2 

Size of the reduced basis 

(full systems KPERBGO), 

𝑒𝑟𝑏 = 5 ∗ 10−2 

Computational speed-

up, 𝑒𝑟𝑏 = 5 ∗ 10−2  

4 160 129 31 4.7 

6 310 277 33 8.2 

8 550 518 32 15.1 

 

In this case, using the classical EGO approach the optimization with eight layers required 550 full numerical 

solutions while using the proposed approach with 𝑒𝑟𝑏 = 5 ∗ 10−2 involved only 32 full numerical solutions.  

The time speedup achieved for the eight layers problem is quite significant. This is again achieved by the 

proposed approach by computing the full solution for only 32 out of the 550 simulations. At the 518 other 

simulations only the reduced basis solution is computed. 

Note that the number of reduced basis vectors is roughly constant with the increasing number of layers. This 

is due to the fact that for the current problem the overall laminate anisotropy achieved with the various number 

of layers is roughly the same, the complexity of solving the problem is thus roughly the same. 



2.  Non-symmetric multi-layered laminated plate 

We consider in this sub-section the case of a non-symmetric laminated plate subject to the same loading 

conditions as given in Figure 5. The non-symmetry of the laminate renders the problem significantly tougher to 

solve.  

We provide in Table 8 the optimum results for the non-symmetric laminated plates with a hole using EGO 

and KPERBGO with 𝑒𝑟𝑏 = 5 ∗ 10−2. Again we can note that the KPERBGO solutions agree for all relevant 

engineering purposes very well with the EGO. 

Table 8. Optimum ply arrangement for non-symmetric multi-layered plate with hole (Material-2) 

 

 EGO  KPERBGO (𝑒𝑟𝑏 = 5 ∗ 10−2 ) 

NL 𝜃∗  𝜃∗ Err EGO to KPERBGO 

2 [42.8, −41.1]  [42.7, −41.3] -0.0367 

3 [−43.2, 41.5, 42.0]  [−43.2, 41.3, 41.9] -0.0052 

4 [43.1, −45.2, 40.9, −44.2]  [42.9, −44.7, 41.1, −44.0] 0.00079 

 

Table 9 provides the comparison of the numerical efficiency on this application problem. 

Table 9. Numerical efficiency comparison of the EGO and KPERBGO algorithm for a square non-

symmetric multi-layered plate with hole  

NL Number of full 

systems EGO 

Number of projected 

systems KPERBGO, 

𝑒𝑟𝑏 = 5 ∗ 10−2 

Size of the reduced basis 

(full systems KPERBGO), 

𝑒𝑟𝑏 = 5 ∗ 10−2 

Computational speed-up, 

𝑒𝑟𝑏 = 5 ∗ 10−2  

2 235 151 84 2.5 

3 410 230 180 2.0 

4 540 343 197 2.3 

 

The advantage in numerical efficiency of KPERBGO is smaller in this problem compared to the previous 

one, but it can still reach a factor of almost three. Optimization of arbitrary (non-symmetric) laminates is known 

however to be a hard problem, which we can confirm here. The reason why significantly more full simulations 

are required here is that the deformation shapes of non-symmetric laminates have significantly higher variability 

than those for symmetric laminates. Accordingly more bases vectors are required in order to accurately 

approximate solutions by projection on a reduced basis.  

VI. Application to orthotropic elastic constants identification 

A. Description of the identification problem 

      In the present section we apply the methods described in section IV to the problem of identifying the four 

orthotropic elastic constants of a composite laminate based on full field displacements.  



We will use here a simulated experiment of a tensile test on a plate with a hole (similar to the ASTM D 3039 

tensile test on a plate with a hole). The laminated plate has a stacking sequence of [45,-45,0]s  and the 

dimensions are given in Figure 7, with a total plate thickness of 0.96 mm. The applied tensile force is 1200 N. 

The full field measurement is assumed to take place on the entire 20 x 20 mm
2
 area of the specimen. No exact 

analytical solutions exist for expressing the displacement field, so this problem is solved with an in-house finite 

element solver based on the gmsh open source mesh generator 
60

. 

 

 

Figure 7. Simulated experiment specimen geometry and the material orientation axes. 

 

The identification problem consists in determining the four orthotropic elastic constants E1, E2, ν21 and G12 of the 

composite laminate, given that we measure the displacement fields in the X and Y directions (see Figure 7) over 

the entire specimen area. Note that the material orientation 1 corresponds to the X direction while the material 

orientation 2 corresponds to the Y direction. 

Since we wanted to test and compare the efficiency of the methods described in section IV within this 

identification context we chose to use a simulated experiment such as to have reliable reference values for the 

material properties.  

The simulated experiment was obtained by adding a white noise to finite element results that were run with the 

material properties provided in Table 10. These properties are typical of a graphite/epoxy composite laminate. 

Table 10.Material properties for the simulated experiment 

Parameter E1(GPa) E2(GPa)  ν21  G12 (GPa) 

Value  65.2  26.2  0.314     29 

 

The noise on the displacement at each of the mesh nodes was assumed to be Gaussian with zero mean and a 

standard deviation of 5% of the maximum displacement amplitude. 

R = 2 mm 

F = 1200 N F = 1200 N 

20 mm 

X 

Y 



 

The displacement fields of the simulated experiment are illustrated in Figure 8. 

 

 

Figure 8. Displacement fields of the simulated experiment 

The present identification problem is solved in this work using a model updating approach, which involves 

finding the material properties that minimize the error, expressed in least squares terms, between the model 

prediction and the measurement represented by the experimental displacement field 𝑈𝑘
𝑒𝑥𝑝

. Since this 

identification formulation involves solving a non linear optimization problem, it is quite sensitive to 

computational time of the numerical solution.  

Accordingly, the objective function is written as: 

𝐽(𝐸1, 𝐸2, 𝜈21, 𝐺12) =
1

2
(∑(𝑈𝑘(𝐸1, 𝐸2, 𝜈21, 𝐺12) − 𝑈𝑘

𝑒𝑥𝑝
)

2
𝑁

𝑘=1

)           (20) 

where N is the size of the displacement field vector (the size of the solution of the finite element problem) and 

subscript k represents the k-th line of the corresponding vector 

The identification formulation is then written as: 

min
{𝐸1,𝐸2,𝜈21,𝐺12 }

𝐽 

 

B. The identification problem results 

      The identification framework presented in section VI.A is now applied on a test case based on the simulated 

experiments with a noisy simulation obtained with the material properties given in Table 10, denoted reference 

values.  

The initial design of experiments used is a Latin hypercube design 
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 within the bounds provided in Table 11. 

 



Table 11. Bounds for the design of experiments 

Parameter E1(GPa) E2(GPa)  ν21  G12 (GPa) 

Lower bound  50  20  0.3     24 

Upper bound  80  32  0.35     32 

 

Based on this DoE the key points approach 
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 is applied with an error criterion 𝑒𝑟𝑏 = 10−3 to construct the initial 

reduced basis. 

The identification results are provided in Table 12 with 10426 degrees of freedom.  

 

Table 12. Identified material properties for the test case 

Parameter E1(GPa) E2(GPa)  ν21 G12 (GPa)          𝐸𝑟𝑟 (Eq. 19) 

Reference values 65.2 26.2  0.314 29.000                   0 

EGO 65.2 26.1  0.313 29.3                   0.0209         

KPERBGO 65.2 26.2  0.314 29.8                   0.0695 

KPERBGOTE 65.2 26.2  0.314 28.9                   0.0278 

KPECGO 65.2 26.3  0.315 29.1                   0.0069 

 

The identified properties generally agree well with the reference values in all test cases.   

We provide in Table 13 the ratio of the total computational times (when we use only full simulation) of the EGO 

algorithm, to the reduced computational times (when we use both full and reduced basis simulations) 

Table 13. Numerical efficiency comparison of the computational cost for the test case 

Method Number of 

systems 

Size of the  reduced 

basis (full systems)  

Number of  projected 

systems  

Computational 

speed-up 

EGO 310 - - - 

KPERBGO  310 12 298 23.1 

KPERBGOTE  310 15 295 18.1 

KPECGO  175 47 128 3.27 

 
For the EGO algorithm, the simulations consist in computing a full resolution for each experiment of the DoE 

and the infill points selected at each cycle. For the others approaches, only a fraction of the full numerical 

solutions is calculated. At the majority of points, the reduced order model, with negligible computational cost is 

used. The computational speed-up is calculated to indicate the efficiency of the proposed approaches. Note again 

that reduced basis modeling is more efficient with larger size finite element problems since the inversion of the 

system of equations takes longer. For very large scale problems significant computational cost savings can thus 

potentially be achieved.  

Note that, while KPECGO achieved the best convergence level with respect to the true optimum and also 

required the least total number of iterations, it achieved the lowest speed-up through the use of reduced basis. 

The relatively poor speed-up achieved can be explained by the fact that co-kriging requires a relatively large 

percentage of high fidelity models in order to merge appropriately the low and high fidelity models. Toal 
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suggested that between 10% and 80% of the simulations budget should be spent on the low fidelity simulations 

in order for co-kriging based multifidelity optimization to work well. This of course limits the potential speed-up 

that can be achieved. Based on these first attempts to use co-kriging within the proposed reduced basis surrogate 

based optimization framework co-kriging does not appear to bring any significant benefits. This is likely due to 

the fact that the reduced basis models are for the majority of infill points quite accurate and using the co-kriging 

is then overkill for trying to fuse simulations of almost same fidelity. Further investigations of co-kriging within 

a reduced basis framework are left for future work. 

VII.  Conclusions 

The present article proposed an approach for improving the efficiency of global optimization based on the 

combination of reduced basis modeling and the efficient global optimization algorithm. The proposed approach 

seeks to construct an initial reduced basis that requires only a small number of expensive full numerical solutions 

made possible by an efficient reduced basis method. The full scale (expensive) problem is only solved at a small 

number of key DoE points, while the reduced order model is used at all the others. The infill phase of the 

optimization also benefits from running reduced order models, whenever their accuracy is sufficient. Since the 

infill phase often clusters points in regions of local or global minima, the reduced basis modeling can be 

particularly efficient since the reduced order model for a point in close vicinity to points that served for the 

reduced basis construction will often have sufficiently high accuracy. We proposed three different 

implementations of the general concept exposed. 

The efficiency of the proposed coupling approaches is demonstrated on stiffness maximization of laminated 

composites as well as on the identification of orthotropic elastic constants. Compared to the crude EGO method 

that required full scale problem solving at each design of experiment point and at all the additional points that 

maximize the expected improvement, our approach showed great potential to reduce the computational costs. 

Note that the effectively achievable speed-up is problem dependent. Nevertheless on the application problems, 

we obtained a speed-up of up to a factor of 32.7.  
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