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Abstract Some applications such as identification or
Monte Carlo based uncertainty quantification often require
simple analytical formulas that are fast to evaluate. Approxi-
mate closed-form solutions for the natural frequencies of
free orthotropic plates have been developed and have a
wide range of applicability, but, as we show in this arti-
cle, they lack accuracy for vibration based material proper-
ties identification. This article first demonstrates that a
very accurate response surface approximation can be con-
structed by using dimensional analysis. Second, the article
investigates how the accuracy of the approximation used
propagates to the accuracy of the elastic constants iden-
tified from vibration experiments. For a least squares iden-
tification approach, the approximate analytical solution led
to physically implausible properties, while the high-fidelity
response surface approximation obtained reasonable esti-
mates. With a Bayesian identification approach, the lower-
fidelity analytical approximation led to reasonable results,
but with much lower accuracy than the higher-fidelity
approximation. The results also indicate that standard least
squares approaches for identifying elastic constants from
vibration tests may be ill-conditioned, because they are
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highly sensitive to the accuracy of the vibration frequencies
calculation.
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1 Introduction

Plate vibration has been frequently used for identifying
the elastic constants of a plate (Mottershead and Friswell
1993), especially composite laminates. The identification
is usually done with free-hanging plates in order to avoid
difficult-to-model boundary conditions. Bayesian statisti-
cal identification approaches (Kaipio and Somersalo 2005)
have the advantage of incorporating in the identification
procedure different sources of uncertainty. They can also
provide confidence intervals and correlation information on
the identified properties. However, the Bayesian method can
require Monte Carlo simulation which implies large num-
ber of vibration calculations for many combinations of the
uncertain parameters such as geometry, material parame-
ters, and boundary conditions. Numerical solutions for free
plate vibration natural frequencies, such as Rayleigh–Ritz
or finite elements, are too slow to be used in such a con-
text. Accordingly there is a need for simple approximate
analytical formulas that can be evaluated very quickly.

A simple, closed-form approximate analytical solution
for the vibration problem of orthotropic plates with free
boundary conditions was proposed by Dickinson (1978).
This solution is applicable to wide ranges of geometries and
materials, but its accuracy might not be sufficient for iden-
tification purpose. The aim of the present paper is twofold.
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First we seek to develop a procedure for a high fidelity,
analytical, approximate formula for the natural frequencies
of free orthotropic plates based on response surface (RS)
methodology. To achieve the desired fidelity the response
surface method is combined with dimensional analysis.
Our second goal is to assess the effect of the approxima-
tion fidelity on the identification results. For this purpose
we compare the results of a least squares and a Bayesian
identification using the high fidelity RS approximation and
the low fidelity closed-form frequency approximations on
experimental data obtained by Pedersen and Frederiksen
(1992).

In Section 2 we give a quick overview of the approximate
analytical solution developed by Dickinson. In Section 3
we apply dimensional analysis to determine the variables
of the response surface approximations (RSA) that lead to
the best accuracy. In Section 4 we construct the design
of experiment for the RSAs and finally, in Section 5, we

compare their fidelity to finite element analyses and to
that of the analytical solution by Dickinson. In Section 6
we introduce the least squares and Bayesian identification
schemes. Section 7 presents the identification results using
the high fidelity approximations while Section 8 those with
the low fidelity approximation. We provide concluding
remarks in Section 9.

2 Dickinson’s analytical frequency approximation

The only simple approximate analytical formula for free
vibration of orthotropic plates the authors could find was by
Dickinson (1978). He applied characteristic beam functions
in Rayleigh’s method to obtain an approximate formula for
the flexural vibration of specially orthotropic plates. The
formula for free boundary conditions on all four edges is
restated below for convenience.
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where fmn is the natural frequency of the mode with wave
numbers m and n; ρ is the density of the plate; a, b, h
its length, width respectively thickness and Dij the plate
flexural rigidities. The rigidities Dij are a function of the
elastic constants of the ply (E1, E2, ν12, G12,), related by
classical lamination theory; for a detailed construction pro-
cedure of the Dij refer to Gürdal et al. (1998). Part of the
notations used are also represented in Fig. 1, for a generic
vibration mode. G i, Hi, Ji are constants, depending only on
the mode numbers m and n, whose expressions are given in
Table 1.

Note that in order to compare the results of (1) to experi-
mental or numerical results one has to associate the mode
numbers to the experimentally or numerically obtained
mode. The mode number m respectively n is defined (Waller
1939, 1949) by the number of nodal lines perpendicular to

Fig. 1 Plate dimensions and notations. The generic mode represented
has mode numbers m = 2, n = 1

the edge x respectively y plus one. How to count the num-
ber of nodal lines can however be tricky, especially for low
modes that can have circular symmetry, so for a detailed
study of the modes and associated mode numbers of free
plates we refer to Waller (1939, 1949).

This simple analytical expression is computationally
inexpensive, thus a priori suitable for use in statistical
methods which require its repeated use a large number of
times. However the fidelity of the approximation must also
be acceptable for such a use. This analytical approxima-
tion was reported to be within 5% of the exact numerical
solution (Blevins 1979). It is not clear whether this accu-
racy is sufficient when used for identifying accurate elastic
constants from vibration experiments. Therefore, in the
next sections we will also develop more accurate response
surface approximations of the natural frequencies.

3 Determining nondimensional variables for the RSA

Response surface methodology, also called surrogate mod-
eling, is a technique used to approximate the response of a
process which is known only in a finite and usually small
number of points. The points where the response is known,
which constitute the design of experiments (DoE), are fitted
with a particular function depending on the RSA type used.
A popular RSA type is the polynomial response surface
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Table 1 Expression of the
coefficients in the approximate
formula for natural frequencies

Mode index i G i Hi Ji

1 0 0 0

2 0 0 1.216

3 1.506 1.248 5.017
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(PRS), which uses least-square fit to obtain a polynomial
approximation. For more details on RSA techniques refer to
Myers and Montgomery (2002).

For elastic constant identification, we propose to fit to
finite element simulations of the natural frequencies of the
plate a PRS in terms of parameters that may have some
uncertainty in their values: ρ, a, b, h and the four Dij, that
involve the elastic constants that we seek to identify. We
could directly construct a polynomial response surface as a
function of these individual model parameters. However, the
accuracy of the RSA is generally improved and the number
of required simulations is reduced if the number of variables
is reduced by using the nondimensional parameters charac-
terizing the problem (Gogu et al. 2009a). To find these
parameters we nondimensionalize the equations describing
the vibration of a symmetric, specially orthotropic laminate.

Governing equation: D11
∂4w
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On edge y = 0 and y = b (denoted y = 0;b):
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This vibration problem involves 11 variables to which we
add the variable of the natural frequencies fmn that we seek,
so a total of 12 variables for the problem of determining the
plate’s natural frequency (see Table 2).

These 12 variables involve three dimension groups
(m, kg, s). According to the Vaschy–Buckingham theorem
(Vaschy 1892; Buckingham 1914) we know that we can
have a minimum of 12 − 3 = 9 nondimensional groups.

Posing τ =
√

ρha4

D11
, which is a characteristic time con-

stant, the nine nondimensional groups can be expressed as
given in Table 3:

As function of these nondimensional variables the vibra-
tion problem can be written as follows:

Governing equation:
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Table 2 Variables involved
in the vibration problem
and their units

Variable fmn w x y a b t ρh D11 D12 D22 D66

Unit
1

s
m m m m m s

kg

m2

kg × m2

s2

kg × m2

s2

kg × m2

s2

kg × m2

s2
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Table 3 Nondimensional
parameters characterizing the
vibration problem

Nondimensional parameters � = w

h
θ = t

τ
ξ = x

a
η = y

b

mn = τ fmn 	12 = D12
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b
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We seek an RSA only of the nondimensional natural fre-
quency Ψmn , so we are not interested here in the mode
shapes. Accordingly we do not need the nondimensional
mode shape Ω , and the nondimensional frequency does not
depend on the nondimensional time θ , nor on the nondimen-
sional coordinates ξ and η. This means that the nondimen-
sional natural frequency Ψmn can be expressed as a function
of only four nondimensional parameters Ψmn = Ψmn(	12,
	22, 	66, γ ).

Note that rewriting the analytical approximation of (1) in
its nondimensional form leads to a polynomial function of
the nondimensional parameters:
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Equation (2) is a cubic polynomial in 	12, 	22, 	66 and
γ 2. We will therefore express the squared nondimensional
frequency as a cubic polynomial response surface (PRS) in
terms of these four variables. Such a PRS has 31 additional
polynomial terms beyond those in (2), which can potentially
increase the fidelity of the response surface approximation.

4 Constructing the RSA

To fit the RSA we need to sample points in the four-
dimensional space of the nondimensional parameters. The
ranges of the sampling space depend on the application,
and we selected experiments carried out by Pedersen and
Frederiksen (1992) for comparing the analytical and RS
approximations. If we sampled in the nondimensional vari-

ables directly, it would be difficult to deduce values for the
dimensional variables needed for the FE model (E1, E2, ν12,
G12, a, b, h and ρ). Accordingly we chose the following
procedure to obtain the points in the nondimensional space
and their corresponding dimensional parameters:

1. Sample 5,000 points in the eight dimensional-variables
space {E1, E2, ν12, G12, a, b, h, ρ} with uniform Latin
hypercube sampling within the bounds considered for
the problem. The Matlab routines from the Surrogate
Toolbox (Viana and Goel 2009) were used for this step.

2. Out of the 5,000 points extract N points in the nondi-
mensional space by maximizing the minimum (max–
min) distance between any two points. N is chosen to
be either 200 or 250 in the next sections. These steps
ensure that the points are well distributed (space-filling)
in the nondimensional space.

Figure 2 illustrates this procedure in a two-dimensional
case with 	12 and γ only. The blue crosses are repre-
sentative of the 5,000 points sampled in step 1. The red
circles are representative of the 200 points selected in step 2.
Because we stop the max–min search after 100,000 itera-
tions (to keep computational cost reasonable) we might not
have reached the exact maximum minimum distance, but
this is not required for good accuracy of the RSA.

Fig. 2 Illustration of the procedure for sampling points in the nondi-
mensional space
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Table 4 Wide bounds (WB)
and narrow bound (NB) on the
model input parameters

E1 (GPa) E2 (GPa) ν12 G12 (GPa) a (mm) b (mm) h (mm) ρ (kg/m3)

WB Low bound 43 15 0.2 7 188 172 2.2 1,800

High bound 80 28 0.36 13 230 211 3.0 2,450

NB Low bound 52 18 0.23 8.3 202 185 2.55 2,000

High bound 70 25 0.32 11 216 200 2.65 2,240

5 Frequency RSA

The RSA is fitted to finite element (FE) simulations of the
plate which were performed with the Abaqus R© commer-
cial FE software. We used 400 thin plate elements (S8R5)
to model the composite plate. A convergence study showed
that the discretization error is of the order of 0.05% which
is negligible compared to the other sources of uncertainty in
the problem (e.g. measurement uncertainty).

In our case, the RSA will be used for the least squares and
Bayesian identification of the material properties based on
the vibrations experiments from Pedersen and Frederiksen
(1992). The plate is a glass-epoxy composite panel with
stacking sequence [0, −40, 40, 90, 40, 0, 90, −40]s. We
decided to construct two sets of RSAs with two different
bounds. This is because we found that we can use somewhat
narrower bound for the Bayesian identification RSAs with-
out this compromising the results. This behaviour is most
likely due, as will be shown later, to the fact that the least
squares identification problem is more ill-conditioned than
the Bayesian problem. Table 4 presents the wide bounds
(WB) and narrow bounds (NB) used for constructing the
two RSA. Note that the bounds on the dimensions and the
density are somewhat high, not because we consider very
high uncertainty in them but because we wanted the RSA
to be usable for plates with slightly different parameters
(dimensions, etc) as well.

We constructed a cubic polynomial response surface
approximation (PRS) for each of the first ten squared non-
dimensional natural frequencies as a function of the nondi-

mensional parameters determined in Section 3. We used the
procedure described in Section 4, sampling 5,000 points
within the bounds of Table 4, out of which we extracted
N = 250 points that are used for the RSA construction.
The resulting response surface approximations are denoted
RSAWB respectively RSANB. Note that moving from the
nondimensional frequency RSA predictions to the dimen-
sional frequency is done using the equations of Table 3.

To estimate the accuracy of the RSAs, we tested them
with 200 additional finite element simulations at points sam-
pled using the same procedure as described in the previous
section, using the bounds given in Table 4. The results are
given in Table 5, fi being the dimensional frequencies in
order of increasing frequency values. The reader can also
refer to Table 6 to get an idea of the order of magnitude of
the different frequencies.

For comparison we also provide in Table 5 the error of the
analytical frequency approximation of (1) (denoted AFA)
compared at the same 200 test points.

The average error in the analytical approximation over
the first ten frequencies was found to be 4.9%. This is con-
sistent with previous studies (Blevins 1979) which reported
the error of using the analytical formula to be about 5%. On
the other hand the errors in the RSAs are about an order of
magnitude lower.

For these narrower bounds the RSA fidelity achieved was
the highest, the mean of the error among the 200 test points
being smaller than 0.01% for all the frequencies. The maxi-
mum error among the 200 test points was found to be only
about 0.06% for the 9th frequency.

Table 5 Mean and maximum relative absolute error among 200 test points of the frequency RSA predictions with wide bounds (denoted RSAWB),
narrow bounds (denoted RSANB) and the analytical frequency approximations (denoted AFA)

Abs. error (%) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Mean AFA 5.98 8.50 3.47 4.28 7.22 4.68 2.77 5.72 5.75 1.22

RSAWB 0.033 0.548 0.290 0.032 0.038 0.680 0.667 0.583 1.110 0.590

RSANB 0.0043 0.0036 0.0028 0.0045 0.0044 0.0033 0.0029 0.0049 0.0062 0.0046

Max AFA 6.54 16.28 8.06 9.43 23.32 21.11 18.30 10.28 12.05 10.01

RSAWB 0.175 4.197 1.695 0.140 0.195 5.219 5.610 3.680 7.834 7.498

RSANB 0.0212 0.0328 0.0301 0.016 0.0197 0.0155 0.0096 0.0171 0.0613 0.0413
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Table 6 Experimental frequencies from Pedersen and Frederiksen (1992)

Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Value (Hz) 172.5 250.2 300.6 437.9 443.6 760.3 766.2 797.4 872.6 963.4

Mode (n,m) (2,2) (3,1) (1,3) (2,3) (3,2) (1,4) (4,1) (3,3) (2,4) (4,2)

We need to mention at this point that in order to obtain
the good quality of the fit for all ten frequency RSAs careful
modeling was required. Indeed, initially the RSAs for the
frequencies number four to seven were very poor both for
the wide and the narrow bounds. Typical values for these
frequencies are as in Table 6. We can see that frequencies
four and five are relatively close as are six and seven. This is
because the corresponding modes are symmetric relatively
to the x and y axis and the aspect ratio of the plate is close
to one. For each of the N sampling points the dimension
parameters vary slightly and for some of these points the two
symmetric modes switch, meaning that the x-symmetric
mode is lower in frequency than the y-symmetric mode
for some points and not for others. This issue of switching
modes was resolved by modeling only half of the plate and
using symmetry boundary conditions for constructing the
RSA for frequencies four to seven. Using X- or Y-symmetry
boundary conditions allowed following the same mode for
varying plate parameters.

On a final note, while there are other types of surro-
gate models (e.g. kriging, support vector regression, radial
basis neural networks), we limited ourselves here to poly-
nomial response surface approximations. This is because
as shown in the previous paragraphs the PRS achieved
excellent fidelity.

6 Identification problem

6.1 Identification schemes

We use the low fidelity analytical approximate solution and
high fidelity frequency RSAs in two different material prop-
erties identification schemes in order to compare the effect
of the approximation error on the identified results.

The identification procedure seeks the four orthotropic
ply elastic constants (E1, E2, ν12, and G12) of a glass/epoxy
composite based on the first ten natural frequencies of a
[0, −40, 40, 90, 40, 0, 90, −40]s laminate vibrating under
free boundary conditions. We use the values measured by
Pedersen and Frederiksen (1992) as experimental frequen-
cies in the identification procedure. For convenience these
measured frequencies are also given in Table 6. The plate on

which the experiments were done had a length a = 209 mm,
width b = 192 mm, thickness h = 2.59 mm and the plate’s
density ρ was 2,120 kg/m3.

The first identification scheme is a basic least squares
approach. The identified parameters correspond to the min-
imum of the following objective function:

J (E) =
m∑

i=1

(
f num
i (E) − f measure

i

f measure
i

)2

(3)

where E = {E1, E2, ν12, G12}, f measure
i is the i th exper-

imental frequency from Table 6 and f num
i is a numerical

frequency prediction.
The second identification scheme is a Bayesian

approach. It seeks the probability distribution function of
the material properties given the test results. This distribu-
tion can be written as:

π
(
E/ f = f measure) = 1

K
π

(
f = f measure/E

) · πprior(E)

(4)

where π denotes a probability distribution function (pdf),
E = {E1, E2, ν12, G12} is the four dimensional random
variable of the elastic constants, f = { f1 . . . f10} the ten
dimensional random variables of the natural frequencies of
the plate and f measure = {

f measure
1 . . . f measure

10

}
the instance

of the ten measured natural frequencies. πprior is the pdf
of E prior to the measurements and π( f = f measure/E)

is also called the likelihood function of measuring f measure

given E . This function provides an estimate of the likeli-
hood of different values of the elastic constants E given
the test results. For additional details on Bayesian method
applied to the identification of elastic constants the readers
can refer to Gogu et al. (2008, 2009b).

As prior distribution for the properties we assumed
an uncorrelated normal distribution characterized by the
parameters in Table 7. This is a wide prior distribution
corresponding to only vague prior information about the
properties. The mean value was chosen on the basis of least
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Table 7 Normal uncorrelated prior distribution of the material
properties

Parameter E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Mean value 60 21 0.28 10

Standard deviation 10 5 0.05 1.5

squares identification results carried out in Pedersen and
Frederiksen (1992).

The most likely value of the posterior distribution given
in (4) is usually taken as the identified property. We have
shown in Gogu et al. (2008) that, for a similar vibration
problem, the Bayesian identification is generally more accu-
rate than the basic least squares method. The difference
between the two approaches depends, however, on the
problem and can range from negligible to substantial.

6.2 Sources of uncertainty affecting identification

The Bayesian identification can account for different
sources of uncertainty as illustrated in previous studies
(Gogu et al. 2008, 2009b). We considered here that three
sources of uncertainty are present.

First we assumed normally distributed measurement
uncertainty for the natural frequencies. Then we assumed
epistemic uncertainty due to modeling error. Since this
uncertainty depends on the numerical model considered its
implementation will be described in later sections.

Finally we considered uncertainties on the input param-
eters to the vibration model. Apart from the four material
properties, the thin plate model also involves four other
parameters: the plate length, width and thickness (a, b and h)
and the plate density ρ. These parameters are measured
beforehand and are known only with a certain confidence.
We assumed these uncertainties to be normally distributed
as shown in Table 8.

Note that other sources of uncertainty, such as ply-angle
variability, might be present. For simplicity relative to the

Table 8 Assumed normal uncertainties in the plate length, width,
thickness and density (a, b, h and ρ)

Parameter a (mm) b (mm) h (mm) ρ (kg/m3)

Mean value 209 192 2.59 2,120

Standard deviation 0.25 0.25 0.01 10.6

goal of the article we chose however to limit ourselves to
the sources of uncertainty described in this section.

7 Identification using the response surface
approximation

As mentioned earlier, the least squares identification will
use the RSAs with wide bounds (denoted RSAWB, see
Section 5) while the Bayesian identification will use the
RSAs with narrow bounds (denoted RSANB, see Section 5).

7.1 Least squares identification

The least squares (LS) optimization was carried out first
without imposing any bounds on the variables and led to
the optimum shown in Table 9. Note that Pedersen and
Frederiksen (1992) applied a least squares approach coupled
directly to a Rayleigh–Ritz numerical code to identify the
elastic constants. The properties that they found are denoted
as Pedersen and Frederiksen (1992) values in Table 9 and
following.

The differences between the frequencies at the opti-
mal points and the experimental frequencies are given in
Table 10. They are relatively small and the identified values
are also reasonably close to the values by Pedersen and
Frederiksen. This means that the accuracy of the RSAWB

is good enough to lead to reasonable results.

7.2 Bayesian identification

Apart from the model input uncertainty, described in
Section 6.2 and which is common to all the cases, the
Bayesian model using the frequency RSAs also considered
the following uncertainty on the natural frequencies, whose
magnitude is specific to the approximation. Additive normal
uncertainty was assumed to stem from the inaccuracies in
the experimental frequency measurement. We considered a
zero mean and a standard deviation varying linearly between
0.5% for the lowest frequency and 0.75% for the highest.

Table 9 LS identified properties using the frequency RSAWB

Parameter E1 E2 ν12 G12

(GPa) (GPa) (GPa)

Identified values 60.9 22.7 0.217 9.6

Pedersen and Frederiksen (1992) 61.3 21.4 0.279 9.8
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Table 10 Differences between experimental frequencies and numerical frequencies corresponding to identified properties for LS identification
using the frequency RSAs objective function, [J (E) = 1.7807 × 10−4]

Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Difference (%) 0.11 −0.60 0.09 0.88 −0.25 0.30 −0.18 0.38 −0.46 −0.30

The error stemming from the inaccuracies in the RS approx-
imation is of the order of 0.01%, allowing us to neglect it
compared to the measurement error. This leads to the error
model shown in (5).

fm = f RSA
m (1 + um) where

um ∼ N

(
0,

(
0.0075

(m − 1)

10 − 1
− 0.005

(m − 10)

10 − 1

)2
)

(5)

The posterior probability distribution function (pdf) of
the material properties was calculated using (4) and
Monte Carlo simulations. This calculation required about
130 million frequency calculations thus motivating the need
for fast to evaluate analytical frequency approximations.
This calculation is clearly out of reach of brute force
approach, where the Bayesian identification would be cou-
pled directly to the finite element simulations. In contrast,
least squares based identification would typically require
between 100 and 100.000 evaluations, depending on the
conditioning of the problem, which does not always justify
the need for surrogate modelling.

The most likely point of the posterior pdf is given in
Table 11. The values by Pedersen and Frederiksen (1992)
are also provided.

The Bayesian identified values are close to the values
from reference (Pedersen and Frederiksen 1992) and also
relatively close to the values identified with the RSA based
least squares approach in Table 9. Note that the literature
values from reference (Pedersen and Frederiksen 1992) are
not necessarily the true values. The true values are probably
close but reference (Pedersen and Frederiksen 1992) did not
provide any uncertainty measure (such as confidence inter-
vals for example). The Bayesian method can on the other
hand provide an estimated confidence interval based on the

Table 11 Most likely point of the posterior pdf using the frequency
RSANB

Parameter E1 E2 ν12 G12

(GPa) (GPa) (GPa)

Identified values 61.6 20.3 0.280 10.0

Pedersen and Frederiksen (1992) 61.3 21.4 0.279 9.8

posterior pdf. It is not the objective of the present article
to do a complete characterization of the identified posterior
pdf, so for additional details we refer to our dedicated paper
(Gogu et al. 2009b). Previous studies (Gogu et al. 2008) on
a similar vibration identification problem have also shown
that the Bayesian most likely point is on average closer to
the true values than the least squares estimate.

All in all, using the RSAs in the identification schemes
leads to reasonable results which are in agreement with
the literature values, whether using the least squares or the
Bayesian identification method. This is not surprising since
the RSAs have good accuracy allowing both methods to
unfold properly.

In the next section we investigate the identification
results obtained with the low fidelity analytical approximate
solution (Dickinson 1978) which has much poorer accu-
racy. The poorer accuracy could lead to more significant
differences between the two identification methods.

8 Identification using analytical approximate solution

8.1 Least squares identification

Using the low fidelity analytical approximate solution the
least squares (LS) optimization was carried out first while
imposing bounds on the variables. We imposed on E1, E2,
ν12, and G12 the bounds NB given in Table 4, which seem
reasonable for the properties that we are seeking. The results
of the optimization are given in Table 12. The norm of the
residuals (i.e. the value of the objective function) is J (E) =
0.019812.

We note that several variables hit the bounds. We could
keep these results since the bounds we imposed are quite

Table 12 LS identified properties using the analytical approximate
solution (bounded variables; variables denoted with * have hit a bound)

Parameter E1 E2 ν12 G12

(GPa) (GPa) (GPa)

Identified values 52.0* 25.0* 0.298 8.3*

Pedersen and Frederiksen (1992) 61.3 21.4 0.279 9.8
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Table 13 Absolute relative differences between the analytical formula approximation and finite element simulations with the material properties
identified by Pedersen and Frederiksen (1992)

Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Difference (%) 6.55 13.0 7.02 5.82 5.71 1.74 0.83 7.00 8.41 1.39

wide and from a physical point of view based on prior
knowledge it is quite unlikely that the true parameters lie
outside the bounds. We wanted however to also know what
happens when imposing no bounds at all and the cor-
responding results are provided in the Appendix 1. The
identified values are significantly worse since some of the
identified parameters have physically impossible values.

The unbounded identification also showed that the prob-
lem is relatively ill-conditioned due to a flat objective func-
tion around the optimum. This emphasizes the importance
of high fidelity frequency approximations in order to avoid
low accuracy on the optimum estimate.

The least squares identification with the low fidelity
analytical approximation thus leads to significantly worse
results than the same identification using the high fidelity
response surface approximations. To gain additional insight
we checked whether the approximate analytical formula
by Dickinson might be particularly inaccurate around the
actual properties of the plate. Accordingly we provide
in Table 13 the difference between formula’s predictions
and finite element results, both obtained for the material
properties identified by Pedersen and Frederiksen (1992).

The results show that analytical formula has an average
error for the ten frequencies of about 5.7%, thus not
being significantly more inaccurate than what we had found
earlier in Table 5. This means that the poor identification
results do not appear to be due to particularly poor accuracy
of the formula only around the actual values of the prop-
erties. Instead, as will be shown later, the flatness of the
least-squares objective function leads to error amplification
or ill-conditioning.

8.2 Bayesian identification

On top of the model input uncertainty, described in
Section 6.2, the present Bayesian identification considered
the following uncertainty on the natural frequencies. As
for the high fidelity RSA identification in Section 7.2, the
uncertainty was assumed to have two sources. The first is
due to the inaccuracy in the analytical approximation. The
error in the formula was shown in Section 5 to be typically
of the order of 5% so a normally distributed uncertainty with
standard deviation of 5% was assumed. A second additive
uncertainty was assumed to stem from the inaccuracies in
the experimental measurement of the natural frequencies.

As in Section 7.2 this uncertainty was assumed normal, with
the standard deviation varying linearly between 0.5% for the
lowest frequency and 0.75% for the highest.

The likelihood function and the posterior probability
distribution function (pdf) of the material properties were
calculated using (4). The most likely point of the poste-
rior pdf is given in Table 14. Note that with the Bayesian
identification, bounds on the material properties do not
apply, since the prior distribution assumes this regulariza-
tion purpose.

The results of the Bayesian identification obtained with
low fidelity analytical approximations are again signifi-
cantly poorer than the results obtained using the high
fidelity response surface approximations in Section 7.2.
This illustrates again the importance of having high fidelity
frequency approximations in order to obtain accurate iden-
tification results on this vibration based problem.

On a side note we observe that in spite of using the
approximate analytical frequency solution which led to very
poor results with the least squares formulation, using the
Bayesian approach we identified properties that are physi-
cally plausible, even if they are still very far from the values
in Pedersen and Frederiksen (1992). This is partly due to the
Bayesian identification accounting for the different sources
of uncertainty we described earlier. To have additional
understanding of what is happening in the two identification
cases we compared graphically the two approaches in
Appendix 2. This showed that the least squares problem
appears to be significantly more ill-conditioned than the
Bayesian problem.

On a final note, it might be tempting to draw con-
clusions at this point as to the comparison of least and
Bayesian identification accuracies. This is however outside
the scope of the article which aims only the comparison
between low and high fidelity approximations. We refrained

Table 14 Most likely point of the posterior pdf using the analytical
approximate solution

Parameter E1 E2 ν12 G12

(GPa) (GPa) (GPa)

Identified values 47.2 27.6 0.290 9.4

Pedersen and Frederiksen (1992) 61.3 21.4 0.279 9.8
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from a comparison between least squares and Bayesian
identification because it would be quite tricky since the
results with the low and high fidelity approximations point
in different directions, thus preventing any clear cut con-
clusions. For a thorough comparison of least squares and
Bayesian identification we refer the reader to Gogu et al.
(2008), article which breaks down several effects affecting
the two identification approaches.

9 Conclusions

The first part of this article was devoted to approximating
the natural frequencies of a vibrating orthotropic plate by
polynomial response surface approximations (RSA). While
the method and the obtained expressions are relatively sim-
ple, it can achieve high fidelity, allowing it to be used
in most applications that require fast function evaluations
together with high fidelity such as Monte Carlo simulation
for Bayesian identification analysis. The RSAs constructed
were between one and two orders of magnitudes more accu-
rate than previously existing approximate analytical formu-
las for vibration of free orthotropic plates. To achieve such
high fidelity, the RSAs were fitted to the nondimensional
parameters characterising the vibration problem.

Note that the overall procedure is applicable not only
to free but any boundary conditions as long as the RSAs
are refitted to the corresponding design of experiments in
terms of the nondimensional parameters characterizing the
vibration problem with the specific boundary conditions.

In the latter part, we showed that the fidelity of the fre-
quency approximation has a significant impact on the mate-
rial properties identification problem we consider. High
fidelity approximations such as the nondimensional fre-
quency RSAs can be used independently with least squares
or Bayesian identification schemes and lead to reasonable
results.

Frequency approximations with errors of the order of 5%
such as the analytical approximate solution by Dickinson
may be perfectly adequate for applications such as design
or uncertainty propagation. They can however lead to
unreasonable identification results. Using a least squares
approach led in our case to physically implausible results.
The Bayesian approach, while always obtaining physically
reasonable results, was still substantially less accurate than
the identifications using the high fidelity approximations.
While the fact that the high fidelity RSA lead to more
accurate results than the low fidelity approximate analyti-
cal formula would be expected, the magnitude of the error
with the low fidelity approximation is worth drawing atten-
tion to: the error was amplified from an average of 5%
on the natural frequencies to an average between 15% and

270%, depending on the case, when moving to the identified
properties.
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Appendix 1: Unbounded least squares optimization
results for the low fidelity approximation

Considering that the bounded least squares optimization of
Section 8.1 hit the bounds we did the optimization again,
this time without imposing any bounds. The optimum found
is given in Table 15. The residuals between the frequencies
at the optimal points and the experimental frequencies are
given in Table 16. The norm of the residuals (i.e. the value
of the objective function) is J (E) = 0.019709.

It is obvious from the identified results that the optimum
found is not plausible. Not only are the parameters quite
far away from the literature values but the Poisson’s ratio
and shear modulus have negative values. While a negative
Poisson’s ratio could in theory be possible, negative shear
modulus has no physical meaning.

For comparison we also provide the difference between
the experimental frequencies and the numerical frequencies
at the identified properties for the bounded LS identification
case of Section 8.1. It is worth noting that for the unbounded
case, in spite of the implausible optimum, the residuals
are not very large. All are of the order of a few percent,
which for recall is also the order of the accuracy of the
analytical approximate solution compared to finite element
analyses (see Table 5). It is also worth noting that the residu-
als and their norm remain practically unchanged compared
to the bounded optimization (Table 17). This is a sign of
the ill-conditioning of the least squares problem due to a
very flat objective function around the optimum. It hints
that the accuracy of the frequency approximation has a large
effect on the identified results and while a few percent error
might seem very reasonable for some application, it can
lead to extremely bad results when applied to the present
identification problem.

Table 15 LS identified properties using the analytical approximate
solution (unbounded variables)

Parameter E1 E2 ν12 G12

(GPa) (GPa) (GPa)

Identified values 71.1 46.2 −0.402 −17.1

Pedersen and Frederiksen (1992) 61.3 21.4 0.279 9.8
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Table 16 Differences between experimental frequencies and numerical frequencies corresponding to identified properties for LS identification
(unbounded case) using the analytical approximate solution [J (E) = 0.019709]

Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Difference (%) −1.24 6.96 −6.77 1.69 −1.38 −3.00 0.79 1.48 6.25 −6.75

Appendix 2: Graphical comparison of the
identification approaches with the low
fidelity approximation

To have a better understanding of what is happening in the
two identification approaches when using the low fidelity
approximate analytical solution, we plot the posterior pdf
and the least squares (LS) objective function in a represen-
tative plane. Note that both functions are four dimensional,
thus problematic to represent graphically. To obtain a mean-
ingful representation of these functions we decided to plot
them in the two dimensional plane defined by the following
three characteristic points of the problem: the LS bounded
optimum, the LS unbounded optimum and the most likely
point of the posterior pdf (see Tables 12, 13 and 15 respec-
tively for the coordinates of these points). The posterior pdf
as well as the likelihood function of the material properties
are represented in Fig. 3.

For comparison purposes the least squares objective
function is also represented in this same plane in Fig. 4.

Figure 3b shows that the likelihood function seems to be
multimodal since the distribution function has a local peak
in the bottom half of the image (we cannot affirm this with
certainty since we are looking at a two-dimensional plot of a
four-dimensional function and furthermore the least squares
results seem to indicate that the lower lobe is rather due to
ill-conditioning and not multimodality). This local peak is
relatively far away from the area of physically reasonable
properties around the points max Bayes and LS bounded.
The global most likely point of the likelihood function is
however much closer to this area, which is reassuring.

Figure 3a shows the posterior pdf, that is, the distribution
obtained by multiplying the likelihood function by the prior
distribution. The prior distribution had the effect of killing
the local peak and significantly narrowing down the distri-
bution. This is somewhat unexpected because we assumed

a relatively wide prior distribution which in a typical iden-
tification problem is expected to have little impact on the
results. It is due however to the ill-posedness of the problem
which manifested itself in the least square results as well.

Note that on Fig. 3a the point denoted max Bayes does
not perfectly correspond with the center of the distribution.
This is due to the fact that for the graphical representa-
tion only 1,000 Monte Carlo simulations were used in the
Bayesian approach in order to keep a reduced computational
cost. The effect is a relatively noisy likelihood function and
posterior pdf, which don’t affect however the qualitative
conclusions drawn.

Figure 4 shows the objective function of the least squares
identification plotted in the same three points plane. As cal-
culated from Tables 12 and 15 the two points LS bounded
and LS no bounds have a very close value of the objective
function [J (E) = 0.019812 and 0.019709 respectively].
LS no bounds has however a slightly lower objective func-
tion value, thus making it the global minimum among the
two. Of course in reality the point is physically implausible,
but without bounds, the low fidelity analytical frequency
approximation will mislead an optimizer in this non phys-
ical region. Note that from the shapes of Figs. 3b and 4 it
could be inferred that LS no bounds is a local optimum. This
is however not the case, since from the same starting point,
the optimizer leads first to the point LS bounded than moves
continuously to the point LS no bounds. Since we used a
local optimizer it means that LS bounded and LS no bounds
must be part of the same lobe, but it is difficult to visu-
alize since we only represent a two-dimensional plot of a
four-dimensional function. An immediate corollary is that
the objective function is flat, since the points LS bounded
and LS no bounds, whose parameters are up to 306% apart,
have and objective function, which is only 0.5% different.
The flatness of the objective leads to the ill-conditioning
of the identification problem. We can note that there are

Table 17 Differences between experimental frequencies and numerical frequencies corresponding to identified properties for LS identification
(bounded case) using the analytical approximate solution [J (E) = 0.019812]

Frequency f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Difference (%) −1.27 7.06 −6.84 1.64 −1.37 −2.91 0.72 1.77 6.19 −6.70
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Fig. 3 Two dimensional representation in the three points plane of the posterior pdf (a) and the likelihood function (b). The three points are: max
Bayes = [47.2 GPa, 27.6 GPa, 0.290, 9.4 GPa]; LS bounded = [52.0, 25.0, 0.298, 8.3] and LS no bounds = [71.1, 46.2, −0.402, −17.1]

similarities in shape between the least squares objective
function of Fig. 4 and the likelihood function of Fig. 3b.
This would be expected since the two are based on the same
analytical approximate solution for the frequency calcula-
tions, so errors in this approximation would affect the two
approaches. However apart from being somewhat shifted,
the major difference between the two is that while the LS
objective function has the overall minimum in the lower
lobe, the likelihood function has the most likely point in
the upper lobe, which from a physical point of view is much
more plausible. Together with regularization effect of the
prior distribution these are some of the reasons why the
Bayesian method handles the identification with the low
fidelity approximation significantly better than least squares
method with this same approximation.

Fig. 4 Two dimensional representation in the three points plane of the
least squares objective function
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