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The basic formulation of the least-squares method, based on the L2 norm of the residuals, is still widely used today

for identifying elastic constants of aerospace materials from experimental data.While this method often works well,

methods that can benefit from statistical information, such as the Bayesian method, may sometimes be more

accurate. We seek situations with significant difference between the material properties identified by the two

methods. For a simple three-bar truss example we illustrate three situations in which the Bayesian approach

systematically leads to more accurate results: different sensitivity of the measured response to the parameters to be

identified, different uncertainty in the measurements, and correlation among response components. When all three

effects add up, the Bayesian approach can be much more accurate. Furthermore, the Bayesian approach has the

additional advantage of providing the uncertainty in the identified parameters.We also compare the twomethods for

a more realistic problem of identification of elastic constants from natural frequencies of a composite plate.

I. Introduction

C URRENT design of aerospace structures tends to increasingly
consider uncertainty in material properties. Variability in

strength, for example, is now used to define the A-basis or B-basis
design allowable [1], to comply with regulations of the Federal
Aviation Administration. Uncertainty in elastic constants due to
measurement and modeling errors is an important component of the
total uncertainty.

Currently, a very widespread method for elastic constants
identification seeks to minimize the least-squares error between the
experimental data and themodel predictions. In spite of the existence
of advanced least-squares formulations, which take into account
statistical information [2–4], the simplest formulations of the least-
squaresmethod, based onminimizing theL2 normof the residual [2],
are still extensively used today [5–12]. This basic nonstatistical least-
squares formulation is very simple and most often leads to reason-
ably accurate results. In some situations, however, using statistical
identification frameworks may lead to significant improvements in
accuracy.

The objective of the present paper is to identify and illustrate such
situations. As the statistical methodwe chose the Bayesian approach,

which is among the most general statistical approaches, while its
formulation remains relatively simple. Isenberg [13] detailed a
Bayesian framework for parameter estimation in 1979, which
was later applied by others, in particular, to frequency or modal
identification, i.e., identifying material properties from vibration test
data [14–19]. The Bayesian method has also been proposed for
model validation and verification [20,21].

To compare the results of the basic least-squares and the Bayesian
identification, we used simulated experiments on two problems: a
three-bar truss problem and a plate-vibration problem. We made
the choice of simulated experiments, since these allow easier re-
peatability and more flexibility in isolating different factors that
affect the identification, thus helping to determine the most influen-
tial ones. In [22] we provide the results of the Bayesian identification
of elastic constants from actual vibration measurements, and identi-
fication from full field displacement measurements is provided
in [23].

In Sec. II we provide a brief theoretical overview of the methods
used. Section III introduces a three-bar truss identification problem,
which also serves as a tutorial for the Bayesian approach. In Sec. IV
we compare the Bayesian and the least-squares approaches for the
three-bar truss, identifying situations that differ significantly in the
results. SectionV compares the two identificationmethods on amore
complex, vibration-based problem. In Sec. VI we provide some
concluding remarks.

II. Least-Squares and Bayesian Methodologies
to Parameter Identification

A. Least-Squares Formulations

The most common least-squares approach to parameter identifi-
cation finds the parameters that minimize the squared error between
experimental observations and model predictions.

Let x be a vector of n material properties that we seek to identify,
and let ymeas be a vector of m experimental measurements. We
assume that we have a mathematical model relating x to predictions
of y such that y�x� is the vector ofmmodel predictions. Note that y is
usually also a function of parametersp other thanmaterial properties
(geometry, loads, etc.), which are usually fixed during least-squares
identification.
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The simplest least-squares formulation minimizes the objective
function J�x� defined in Eq. (1) to obtain the identified properties
([2], chapter 1):

J�x� � 1

2
�y�x� � ymeas�T�y�x� � ymeas� � 1

2

Xm
i�1
�yi�x� � ymeas

i �2

(1)

Amore general least-squares formulation usesC�x�, the variance–
covariance matrix of y�x�, as weighting and minimizes

J�x� � 1
2
�y�x� � ymeas�TC�x��1�y�x� � ymeas� (2)

thus taking statistical information into account. The variance–
covariance structure is assumed based on empirical evidence or
calculated using a model.

Because of the challenge of constructing a realistic variance–
covariance matrix C�x�, most least-squares identification applica-
tions revert to the use the formulation of Eq. (1), which ignores
potential statistical information. The formulation of Eq. (1) or its
normalized version, which we call the basic least-squares in the rest
of the paper, have been recently used, for example, in the domain of
elastic constants identification from full field strain measurements
[5–8] or from vibration data [9–12].

B. Bayesian Method

The Bayesian identification approach is a statistical approach.
Unlike the least-squares identification method, it will not provide a
single value for the identified parameter, but a probability distri-
bution. The unknownmaterial properties have a single value, but it is
unknown, and their possible values are represented by the random
variable X (with x being an instance of X). Its probability density
function (PDF) is denoted as �X�x�. In Bayesian identification we
seek to identify the distribution of the material properties X given
a vector of measurements ymeas. The vector of measurements is
assumed to be contaminated by a vector of unknown measurement
errors emeas, stemming from the random variable�meas. The true, but
unknown, response is then given by ymeas

true � ymeas � emeas. Letting
Ymeas

true be the randomvariable of the true response value (it is a random
variable because ymeas

true is unknown), we can then write

Y meas
true � ymeas ��meas (3)

For the identification we compare the measurements to a model’s
prediction (e.g., finite element model) yp0�x� that is a function of the
material properties x and other input parameters p (e.g., geom-
etry, loading) taken at their valuesp0. Because ofmodeling error, and
because the input parameters may not be accurately known, the
random variable of the true response is given as

Y model
true �x� � yp0�x� ��model (4)

where �model is the random variable of the error due to modeling
uncertainty and uncertainty in the input parameters p.

Bayesian identification involves calculating, for given material
properties x, the likelihood that the true response is the samewhether
derived from the measurement or from the model (i.e., the likelihood
that Ymeas

true � Ymodel
true ) equality, which can also be written

D � Ymodel
true � Ymeas

true � 0 (5)

This likelihood, denoted as l�x�, is then defined as the probability
density function ofD, given thatX� x (denoted asD=X� x), taken
at zero: l�x� � �D=X�x�0�. Here, as in the rest of the paper, � stands
for probability density function. While the subscript of � can
represent directly the random variable of the PDF as in �X�x�, it can
stand, as here, for the conditional random variable D, given that
X� x (denoted as D=X� x).

It is important to note that the PDF of D, given X� x, is a
distribution in terms of the values of D and that x can be seen as a
parameter of this distribution. That is, for a given material properties
value x, we need to determine the distribution of D. The likelihood

will then be this PDF ofD for the given x, taken atD� 0. It becomes
a function of xwhen considered for all possible values of thematerial
properties, called the likelihood function of x given the measure-
ments and denoted as l�x�.

An alternative formulation for calculating the likelihood function
can be achieved by introducing the random variable Y of the
measurement prediction for a given x:

Y �x� � yp0�x� ��model ��meas (6)

Equation (5) can then be written as Y � ymeas and the likelihood
function of x, given that the measurement prediction Y should be
equal to the actual measurement ymeas, is then

l�x� � �Y=X�x�ymeas� (7)

For each x, the likelihood value is the PDF of the measurement
prediction given the material properties, Y=X� x, taken at the point
of the actually measured response ymeas.

In the rest of the paper we will use this second formulation,
involving the random variable of the measurement prediction, which
is the most common formulation used in Bayesian identification
literature. Note, though, that most studies traditionally simply call Y
the random variable of the measurements. We preferred calling it the
measurement prediction, since it is constructed for any x (not just the
true value of the properties) and because it can include modeling
uncertainty �model.

Briefly, note that the first formulation allows us to take advantage
of the independence of the randomvariablesYmeas

true andYmodel
true in order

to reduce the computational cost of Monte Carlo simulations, which
may be required to propagate uncertainties through the model. Since
we do not consider expensive problems in this paper, we will not
detail this further, but refer the reader to [23].

An advantage of the Bayesian approach is that it can not only
account for the measurements through the likelihood function, but it
can also easily account for prior knowledge on thematerial properties

using the prior distribution �prior
X �x�, i.e., the PDF of X before

observing ymeas. Such prior knowledge can come from manufac-
turer’s specifications or previous tests.

Based on the likelihood function and the prior distribution,
Bayes’s rule then gives �X=Y�ymeas�x�, the PDF of X given that the
measurement predictionY should be equal to ymeas, by the product of
the likelihood function by the prior distribution:

�X=Y�ymeas �x� � 1
K
� l�x� � �prior

X �x� � 1
K
� �Y=X�x�ymeas� � �prior

X �x�
(8)

where K denotes a normalizing constant.
The identified PDF, �X=Y�ymeas�x�, also called posterior distri-

bution, can be characterized by the mean and most likely values
as well as by the variance–covariance matrix, thus providing un-
certainty measures in the identified properties, which are usually not
obtained in studies applying the basic least-squares approach. For
additional details on the theory ofBayesian analysis, we also refer the
reader to [24,25].

III. Three-Bar Truss Didactic Example

A. Description of the Three-Bar Truss Example

We consider a three-bar truss, subject to a horizontal force p and a
vertical force r, as shown in Fig. 1. All three bars have the same
Young’smodulusE of 10GPa,which is unknown andwhichwewant
to identify from strain measurements on two or three of the bars. The
cross-sectional areas of the bars are known exactly: AA is the cross-
sectional area of bars A and C, and AB is the cross-sectional area of
barB. From static analysis we find the following relationships for the
strains in the bars.

"A �
1

E

�
r

4AB � AA
� p���

3
p
AA

�
(9)
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"C �
1

E

�
r

4AB � AA
� p���

3
p
AA

�
(10)

"B �
1

E

4r

4AB � AA
(11)

B. Sources of Uncertainty

Weconsider that due tomeasurement error, themeasured values of
the forces p and rmight not be their true values. We assume that the
measured forces are normally distributed with mean values of 104 N
for p and 105 N for r and a standard deviation of 500 N for both.

Note that we ignore other sources of uncertainty in the problem,
such as uncertainties in the strain measurements and cross-sectional
measurements. This simplification allows us to easily identify
situations in which the Bayesian and basic least-squares identifi-
cations significantly differ in results. Assuming uncertainties only on
the forces was a reasonable compromise between simplicity and
flexibility for identifying such situations. The vibration identification
problem we consider in the second part provides a more complex
situation.

C. Least-Squares Method

Assuming that we measure the strains in bars A and B, the least-
squares objective function of Eq. (1) can be written as

J�E� � 1
2
��"A�E� � "meas

A �2 � �"B�E� � "meas
B �2� (12)

Note that even though the loads p and r are uncertain, we have to
provide a single nominal value for each. Themost natural candidates
are the means of p and r. Note also that in this simple case it was
possible to find the minimum of J�E� analytically.

D. Bayesian Method

Applying Eq. (8) to the three-bar truss problem we can write the
distribution of the Young’s modulus of the bars given that we
measured "meas

A and "meas
B in bars A and B, respectively, as shown in

Eq. (13):

�E=f"A;"Bg�f"meas
A

;"meas
B g�E� � 1

K
�f"A;"Bg=E�f"meas

A ; "meas
B g� � �prior

E �E�
(13)

The right-hand side of this equation is composed, apart from the
normalization constantK, of two quantities. Thefirst is the likelihood
function of E given the measurements and the other is the prior
probability distribution of E. Here, we assume that the prior
knowledge is in the form of a truncated normal distribution with a
mean value of 9.5 GPa and a standard deviation of 1.5 GPa. We
truncate the distribution at 8 and 11 GPa, meaning that we consider it
impossible for the properties to lie outside these bounds. This is a
wide prior, meaning that its standard deviation is significantly larger
than that of the likelihood function that will be obtained for this
problem, implying that the effect of the prior will be negligible. In the
present paper, we choose not to concentrate on investigating the
effect of the prior, thus the choice of a wide prior, centered relatively

far away from the true value of 10 GPa to avoid significantly biasing
our comparison in favor of the Bayesian identification. Brief results
on the impact of the prior will be given in Sec. IV.E.

The other right-hand side term in Eq. (13) is the likelihood
function of E given the measurements "meas

A and "meas
B . It provides an

estimate of the likelihood of different modulus values given the test
results. In general, we vary E successively from �1 to1, in order
to calculate �f"A;"Bg=E�f"measure

A ; "measure
B g� for each E value. Here,

because the likelihood function multiplies the truncated prior, we
need to consider only values in the truncated region. For a givenEwe
have a PDF for the strains, due to the uncertainty in the loadsp and r,
which propagates to the strains. This PDF is then evaluated at the
point f"A; "Bg � f"meas

A ; "meas
B g.

This procedure is repeated for a series of E values within the
truncation bounds, thus constructing the likelihood function point
by point, then the posterior PDF [left-hand side of Eq. (13)] by the
produce of the prior distribution by the likelihood function.
Appendix A provides a tutorial description of the Bayesian pro-
cedure applied to the three-bar truss problem.

Note that computational cost was not an issue here, due to the
simplicity of the problem, but it can increase significantly as m (the
number of experimental values) and n (the number of parameters to
be identified) increase. Themajor part of the computational cost is the
propagation of uncertainties through the model. If more complex
models were used (e.g., finite elements), the cost could even become
prohibitivewithout the use of approximations (e.g., response-surface
approximations [26]) or more advanced simulation techniques (e.g.,
the use of the independence of the different sources of uncertainty in
combination with the conditional-expectation method [27] and
Markov chain Monte Carlo simulation [4]). The aforementioned
methods usually allow bringing the computational cost down to
reasonable levels for many real-life problems, but still significantly
higher than that of the basic least-squares method. This is the price to
pay, however, for using statistical information in input and obtaining
the statistics of the identified parameters with arbitrary (not
necessarily Gaussian) probability distributions.

IV. Comparison of Least-Squares and Bayesian
Approaches for the Three-Bar Truss Problem

A. Comparison Method

The results of both the least-squares and Bayesian approaches
depend on the actual, but unknown, values of the loads p and r in an
experiment. We first (Secs. IV.B–IV.E) compare the two methods for
extreme cases in which the actual values of p and r are two standard
deviations away from their mean values: ptrue � pm � 2�p and
rtrue � rm � 2�m. These accentuate the difference between the two
methods. Then in Sec. IV.F, we consider 1000 repetitions of the
identification processes in which the true values of p and r are
obtained by Monte Carlo simulations from their distributions. This
second case compares the average accuracy of themethodsmeasured
by the dispersion (e.g., standard deviation) in themodulus estimate as
the loads are varied.

For all cases we compare the modulus obtained from the least-
squares approach to the most likely value from the Bayesian
probability distribution. The differences between the two methods
are likely to be influenced by three factors: 1) differences in the sensi-
tivity of strains to Young’s modulus, 2) differences in the uncertainty
of the different strains, and 3) correlation between strains. For
points 1 and 2, we use the three bars truss with strain measurements
on two of the bars, and for point 3, we use measurements on all
three bars.

B. Results for Different-Sensitivity Strains

Here, we create a situation in which the strain in bar A is more
sensitive to Young’s modulus variations than the strain in bar B. The
least-squares approach tends to emphasize high-sensitivity data (see
Appendix B). Since all strains are inversely proportional to Young’s
modulus, the sensitivity of the strain is proportional to the strain’s
magnitude. A high strain (in absolute value) in one barmeans that the

Fig. 1 Three-bar truss problem.
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strain in that bar has a high sensitivity to E. Thus, we provide the
magnitude of the strains as a measure of their sensitivity to E.

We use the values in Table 1 to create a strain in bar A that is about
triple that in bar B (hence three times more sensitive). The same
relative uncertainty in the loads is applied (2.5%), which propagates
to about the same relative uncertainty in "A and "B.

The results of the two identification procedures are presented in
Table 2. We also provide the Young’s modulus that would be
obtained with each of the measurements alone by inverting Eqs. (9)
and (11). The relatively poor results of the least-squares method are
obtained because it implicitly assigns more weight to "meas

A , to which
E is more sensitive.

Normalizing the strain residuewith respect to themeasured strains
would seem to be an obvious solution to this problem. However,
while it indeed solves the variable magnitude issue, it can create
another problem by assigning the same weights to strains that have
very different uncertainties, which may lead to inaccurate results,
as will be shown in the next section. This means that it is risky to
perform normalization without taking into account the uncertainties
in the measurements.

C. Results for Different Uncertainty in the Strains

To create different uncertainty in the two strains, we used the
values given in Table 3. To isolate this effect from the previous one,
the calculated strains have about the same magnitude and thus the

same sensitivity to E. We chose 5% uncertainty in p and 0.5% in r,
which results in "A having about seven times higher uncertainty than
"B. The results of the two identification procedures are presented in
Table 4 for the extreme case.

Again, the Bayesian approach is much more accurate than the
least-squares approach. Since the two strains have about the same
sensitivity to E (due to same magnitude), the least-squares approach
assigns about the same weight to each, so the identified E is about
the average between the E found with each measurement alone.
The uncertainty information is taken into account by the Bayesian
method through the likelihood function, which may be viewed as
assigning more weight to the measurement having low uncertainty.
This explains why the Bayesian-identifiedmodulus is much closer to
the one found using "meas

B alone. For additional explanations and
graphical representation of the results, refer to Appendix C.

D. Results for Correlation Among the Responses

To show the effect of correlation, we need three strain measure-
ments, with two strongly correlated, but not correlated to the third.
For this purpose, we used the values in Table 5. To isolate this effect
from the previous one, we have the same relative uncertainty inp and
in r, which propagates to about the same relative uncertainty in all
three strains.We could not, however, find values that lead to the same
magnitude for all three strain measurements. Therefore, the least-
squares approach will pay less attention to the small "meas

B . The

Table 1 Numerical values for different-sensitivity strains

Input parameters Strains

Parameter AA, m
2 AB, m

2 p, N r, N "A, mm=m "B, mm=m

Mean value 2 � 10�4 1 � 10�2 104 105 3.13 0.995
Standard deviation —— —— 250 2500 0.0725 0.0248
Measured strainsa —— —— —— —— 3.26 0.945

aExtreme case obtained from Eqs. (9) and (11) with E� 10 GPa, p� pmean � 2�p, and r� rmean � 2�m .

Table 2 Extreme case identification results for different-sensitivity strain (true value of modulus is 10GPa)

From "meas
A alone From "meas

B alone Least-squares Bayesian

E, GPa 9.59 10.52 9.67 9.97 (most likely value),
0.174 (standard deviation)

Table 3 Numerical values for variable response uncertainty

Input parameters Strains

Parameter AA, m
2 AB, m

2 p, N r, N "A, mm=m "B, mm=m
Mean value 7:85 � 10�4 1 � 10�2 104 105 0.980 0.980
Standard deviation —— —— 500 500 0.0368 0.0049
Measured strainsa —— —— —— —— 1.05 0.970

aExtreme case obtained from Eqs. (9) and (11) with E� 10 GPa, p� pmean � 2�p, and r� rmean � 2�m.

Table 4 Extreme case identification results for different response uncertainty (true value of E is 10 GPa)

From "meas
A alone From "meas

B alone Least-squares Bayesian

E, GPa 9.32 10.10 9.69 10.08 (most likely value)
0.058 (standard deviation)

Table 5 Numerical values for response correlation

Input parameters Strains

Parameter AA, m
2 AB, m

2 pm, N rm, N "A, mm=m "B, mm=m "C, mm=m
Mean value 2 � 10�4 1 � 10�2 104 105 3.13 0.995 �2:64
Standard deviation —— —— 250 2500 0.0725 0.0248 0.0725
Measured strainsa —— —— —— —— 3.27 0.945 �2:79
aExtreme case obtained from Eqs. (9) and (11) with E� 10 GPa, p� pmean � 2�p, and r� rmean � 2�m.
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correlation between "A and "C is �0:985, whereas the correlation
between the other two couples is 0.086, meaning that only "A and "C
are highly correlated.

Since the present case will also be affected by the different
magnitude of the strains, we compare Tables 2 and 6, inwhich "meas

B is
small for both. Their comparison shows that the least-squaresmethod
is more affected by adding a correlated measurement (�0:9%
difference) than is the Bayesian approach (�0:1% difference). The
explanation is that the least-squares approach treats all three
measurements as independent and, due to the small magnitude of
"meas
B , it mainly averages "meas

A and "meas
C . The Bayesian approach may

be viewed as averaging the highly correlated "meas
A and "meas

C first,
then, considering the average value as a single experiment, it com-
bines it with the uncorrelated one.

E. Results for All Three Effects Together

In the last case we combine all three effects, which is what would
happen when having different strain sensitivities and uncertainties,
as well as strong correlation between the measurements. As before,
we analyze an extreme case here, meaning that we choose numerical
values such that the different effects add up, tomagnify the difference
between the two identification approaches. The numerical values
used are given in Table 7. The correlation between "A and "C is
�0:999, between "A and "B it is 0.014, and between "B and "C it is
0.002.

We can see in Table 8 that in this case the error in the least-squares
approach is exacerbated. All effects act together and against the least-
squares method. On the other hand, the Bayesian method considers
almost only "B, which has, by far, the lowest uncertainty, leading the
Bayesian method to be much closer to the true Young’s modulus.

Wenowbriefly discuss the influence of the prior distribution on the
Bayesian identification results. The previous results were obtained
for a truncated normally distributed wide prior with a mean value
9.5 GPa and a large standard deviation of 1.5 GPa. If we change the
standard deviation of the prior distribution to 0.75 GPa, keeping the
same mean and the same truncation bounds, we obtain a most likely
value of 10.07 GPa (10.08 previously, see Table 8) for this extreme
case, which is a small improvement, due to a narrower prior. If we
change the mean of the prior distribution to 10.5 GPa, keeping the
standard deviation and the truncation bounds the same, we obtain a
most likely value of 10.09GPa (compared to 10.08). So, even though
we changed the prior significantly, it had very small effects on the
Bayesian identification results. Of course, a much narrower, more

accurate, prior distribution would have substantially improved the
accuracy. Since the availability of a narrow prior is, however, always
problem-specific, we chose to work with a wide prior here, to avoid
significantly biasing the comparison on the basis of the prior.

F. Average Performance

To complement the results obtained for the extreme case,we repeat
the previous procedure 1000 times for random values of the loads
obtained by Monte Carlo simulation, instead of for extreme values.
The numerical values for the cross sections, the loads, and their
uncertainty are those given earlier for each case. The accuracy of the
methods will be measured by the standard deviation ofE as the loads
are varied (see Table 9). For the individual cases the standard
deviations of the Bayesian approach are lower by a fraction
(different-sensitivity case) to a factor of 3.5 (different uncertainty).
The difference is even more striking for the three effects combined,
since the E found by the Bayesian approach will be, on average,
almost 10 times closer to the true value.

Of course, depending on the luck of the draw, we could very well
find an experiment for which the least-squares identified modulus is
more accurate than the Bayesian modulus. However, the average
results show that the situations illustrated on the extreme cases are not
just bad luck, but are representative of a systematic error, due to the
inappropriate treatment of normalization, uncertainties, and correla-
tion by the basic least-squares approach.

On a final note, for the previously analyzed cases, the results
obtained by the Bayesian method can also be obtained by the
generalized least-squares formulation of Eq. (2). For more complex
problems though, the Bayesian approach has the advantage of easily
handling non-Gaussian uncertainties through Monte Carlo simu-
lation, as will be illustrated with the vibration problem. Also, even
though not studied here, a main remaining advantage of the Bayesian
approach over the generalized least-squares formulations is the
simplicity of taking into account prior information. In our examples
we chose a wide prior though, to concentrate on the comparison
between the basic least-squares and the statistical Bayesian
approaches.

V. Vibration Identification Problem

A. Description of the Problem

In this section we explore how the two methods compare for a
more complex identification problem of determining the elastic
properties from the natural frequencies of a composite plate. Since

Table 6 Extreme case identification results for response correlation (true value of E is 10 GPa)

From "meas
A From "meas

B From "meas
C Least-squares Bayesian

E, GPa 9.59 10.52 9.43 9.58 9.96 (most likely value)
0.196 (standard deviation)

Table 7 Numerical values for the three combined effects

Input parameters Strains

Parameter AA, m
2 AB, m

2 p, N r, N "A, mm=m "B, mm=m "C, mm=m
Mean value 2 � 10�4 1 � 10�2 104 105 3.13 0.995 �2:64
Standard deviation —— —— 500 500 0.144 0.005 0.144
Measured strainsa —— —— —— —— 3.42 0.985 �2:93
aExtreme case obtained from Eqs. (9) and (11) with E� 10 GPa, p� pmean � 2�p and r� rmean � 2�m.

Table 8 Extreme case identification results for the three combined effects (true value of the E is 10 GPa

From "meas
A From "meas

B From "meas
C Least-squares Bayesian

E, GPa 9.16 10.10 9.00 9.14 10.08 (most likely value)
0.058 (standard deviation)
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we are only interested here in comparing the two methods, we
simulate experiments from analytical expressions available for
simply supported plates and error models explained hereafter.

We consider a �0; 90	s simply supported graphite/epoxy composite
laminate of dimensions a� 200 mm and b� 250 mm and of total
thickness h� 3 mm. The true elastic constants of the laminate are
given in Table 10.We aim to identify these properties of the laminate
and not those of an individual ply. For simplicity and easy graphical
representation we identify only two properties, assuming that �xy is
known as well as Ex � Ey. This leaves Ex and Gxy to be identified.
Note, however, that the procedure described would remain the same
if all four properties would be identified.

The simulated experiment consists of measuring the first nine
natural frequencies of the plate. The measured frequencies are
generated from a model, to which we add various sources of
uncertainty such asmeasurement andmodeling errors, detailed in the
next section. Thin-plate theory is used as a model for obtaining the
frequencyof themode �k; l� in terms of density� and rigiditiesDij, as
shown in Eq. (14). The bending rigidities Dij are a function of the
thickness and the individual in-plane properties of the laminate
(longitudinal and transverse Young’s moduli Ex and Ey, Poisson’s
ratio �xy, and shear modulus Gxy). For the detailed construction
procedure of the rigidities of a composite laminate, refer to [28]
(chapter 2.3).

fkl�

�
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������
�h
p

���������������������������������������������������������������������������������������������������������
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�
k
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�
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� 2�D12 � 2D66�
�
k

a

�
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b

�
2

�D22

�
l

b

�
4

s

(14)

B. Sources of Uncertainty

For this problem we considered uncertainty in input parameters,
measurement uncertainty, and modeling error. For the model input
parameters, denoted as p, we assumed normally distributed, uncor-
related uncertainties (see Table 11). We combine the measurement
error and modeling error into a uniformly distributed error, within an
interval, which increases linearly for the higher natural frequencies,
because higher modes have shorter wavelengths and are less well
modeled by thin-plate theory. The measured frequencies are then
simulated using the following equation:

fmeas
kl � f

resp
kl �fEx;Gxygtrue;ptrue� � ukl (15)

where fresp is obtained from Eq. (14), which is a function of
fEx;Gxygtrue, the true values of the material properties, and ptrue,
which are the true values of the other input parameters a, b, h, and �.
The random variable ukl aggregates the modeling and measurement
uncertainties �model and �meas of Eq. (6) into a single quantity. It is
assumed to be uniformly distributed in the interval �akl; bkl	, where

akl � fresp11

�
alb � aub

k� l� 2

kmax � lmax � 2

�

bkl � fresp11

�
blb � bub

k� l � 2

kmax � lmax � 2

� (16)

For nine frequencies kmax � lmax � 3. We chose alb ��2:5 � 10�3,
aub ��4 � 10�2, blb � 2:5 � 10�3, and bub ��2 � 10�2. With
these numerical values the error for the lowest natural frequency
f11 would be uniformly distributed within the bounds
��0:0025f11; 0:0025f11	. The error for the highest (ninth) natural
frequency measured would be uniformly distributed within the
bounds ��0:04f11;�0:02f11	. In between these frequencies, the
bounds of the error vary linearly with respect to k and l. The center of
the interval is not zero for frequencies other than the first, due to the
error between thin- and thick-plate theories.

C. Identification Methods

The least-squares methodminimizes the objective function shown
in Eq. (17), where frespkl �Ex;Gxy� is the response calculated from
Eq. (14), using the mean values of a, b, h, and �:

J�Ex;Gxy� �
X

k;l�1;...;3
�frespkl �Ex; Gxy� � fmeas

kl �2 (17)

For the experimental measurements we assumewe know the average
of the systematic error �akl � bkl�=2, for which we correct each

Table 9 Average performance of themethods in the different cases

(the differences in the mean mainly reflects the limited sample size

of 1000 cases)

Mean of E, GPa Standard deviation of E, GPa

Different sensitivity
Least-squares 10.01 0.200
Bayesian 9.99 0.167

Different uncertainty
Least-squares 10.00 0.178
Bayesian 9.99 0.051

Correlation
Least-squares 10.01 0.221
Bayesian 9.99 0.167

All three together
Least-squares 10.04 0.447
Bayesian 9.99 0.050

Table 10 True values of the laminate elastic constants

Parameter

Ex Ey Gxy �xy

True value 57.6 GPa 57.6 GPa 4.26 GPa 0.05

Table 11 Assumed uncertainties on the input parameters

Parameter

a, mm b, mm h, mm �, kg=m3

Mean value 200 250 3 1536
Standard deviation 0.5 0.5 0.01 7.67

Table 12 Simulated measured frequencies and true frequency values (without measurement error)

Frequency, Hz

f11 f12 f13 f21 f22 f23 f31 f32 f33

Measured 267.9 612.9 1266.3 863.6 1070.5 1594.4 1892.0 2032.5 2409.1
True 268.3 612.7 1267.4 864.5 1068.7 1593.9 1893.6 2030.1 2412.3

Table 13 Least-squares and Bayesian results for a randomly

simulated particular case

Ex, GPa Gxy, GPa

True values 57.6 4.26
Least-squares values 56.9 4.66
Bayesian most likely values 57.9 4.30
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experimental frequency fmeas
kl . This is a significant assumption in

favor of the least-squares approach. In reality, the systematic error
might be less well known, which could bias the results. On the other
hand, the Bayesian approach can handle even vague information on
the systematic error, as we will show in the next paragraphs.

The Bayesian approach can be written, as shown in Eq. (18):

�fEx;Gxyg=ff11;...;f33g�ffmeas
11

;...;fmeas
33
g�fEx;Gxyg�

� 1
K
�ff11;...;f33g=fEx;Gxyg�ffmeas

11 ; . . . ; fmeas
33 g� � �

prior
fEx;Gxyg�fEx;Gxyg�

(18)

A main difference compared to the three-bar truss is that we now
also have measurement and modeling error, which we can take into
account in the Bayesian approach. We assume that we know there is
some numerical noise and that thin-plate theory overpredicts the
natural frequency, but we assume we do not know the exact amount.
Accordingly we assume the following frequency and error model for
the Bayesian identification:

fkl � frespkl �fEx;Gxyg;p� � ~ukl (19)

where fresp is the model response using Eq. (14), fEx;Gxyg are the
values of the material properties considered at each identification
step, andp are simulated values of the other input parameters a, b, h,
and �. Variable ~u is a random variable uniformly distributed in the

interval � ~akl; ~bkl	, where ~akl and ~bkl are obtained using Eq. (16) with
alb ��5 � 10�3, aub ��5 � 10�2, blb � 5 � 10�3, and bub�
�1 � 10�2. Note that these error bounds are significantly wider than
those used for simulating the experiment (see previous subsection),
reflecting the fact that we only have vague knowledge of the error
model, and we tend to be conservative.

Note that the joint frequency distribution is of unknown shape
because the frequency response is nonlinear in the uncertain input
parametersp, preventing an analytical calculation of the joint normal
PDF and thus of the likelihood function. Instead, for this particular
case, in which we assumed a uniformly distributed error, we use
an alternative likelihood calculation approach by integrating the
simulated frequencies PDF between the error bounds, as shown in
Eq. (20):

�f=fEx;Gxyg�fmeas� � 1

K

Z
fmeas� ~b

fmeas� ~a

�fMC=fEx;Gxyg�f inputMC �df inputMC

(20)

where f is the nine-dimensional random variable of the frequency
measurement prediction; fmeas is the nine-dimensional vector of the

measured frequencies; ~a and ~b are the nine-dimensional vectors of

the measurement uncertainty bounds ~akl and ~bkl; K is a normalizing
constant; and f inputMC � frespkl �fEx;Gxyg;p� is the nine-dimensional
random variable of the frequencies, due only to uncertainty on input
parameters p, and obtained by Monte Carlo simulation on the
frequency expression of Eq. (14), with the input uncertainties of
Table 11.

Equation (20) is equivalent to saying that the likelihood of
measuring the frequencies fmeas is equal to the probability that the
simulated frequencies f inputMC fall inside the measurement uncer-
tainty bounds. The integral in Eq. (20) is evaluated by counting the

number of frequencies within the bounds �fmeas � ~a; fmeas � ~b	, out
of the total number of simulated frequencies f inputMC .We used 50,000
Monte Carlo simulations. The present calculation approach can also
be seen as implicitly using the independence of the measurement
uncertainty and of the uncertainty due to input parameters, which
allows reducing cost by avoiding the calculation of the full histogram
(see [23] for more details on Eq. (20) and the use of the independence
of random variables).

The prior distribution for the Bayesian identification was assumed
to be a truncated, uncorrelated, binormal distribution with a mean of
57 GPa and a standard deviation of 10 GPa for Ex and 4.2 and
1.5 GPa, respectively, forGxy. The distribution was truncated for Ex
at 55.5 and 59.4 GPa and forGxy at 37.8 and 47 GPa. The truncation
bounds were chosen around the mean value of the prior and
iteratively reduced, to lower computational cost, so that they
eventually cover about five standard deviations of the posterior PDF.
As for the three-bar truss case, the prior was chosen wide enough so
that it does not provide any significant unfair advantage to the
Bayesian approach.

D. Results

To illustrate the benefits of the Bayesian method, we first present
the results for a randomly simulated experiment. The simulated
measured frequencies are given in Table 12, together with the true
frequency response (i.e., without the measurement error). When
repeating the simulation of measured frequencies a few times, we
found that the frequencies of Table 12 lead to rather high differences
between the Bayesian and the least-squares approaches. This case
can then be considered to be an extreme case. We also subsequently
provide the average performance over 100 repetitions of the
simulated experimental frequencies.

The results for the extreme case are presented in Table 13. The
Bayesian approach identifies the distribution shown in Fig. 2.

Both approaches found an accurateEx (about 1% error). However,
forGxy, the least-squares has more than 8% error, compared to 0.9%
error for the Bayesian method. Furthermore, the Bayesian approach
provides additional information in form of the distribution shown in
Fig. 2 (notably, the standard deviation of the properties identified).
The distribution of Gxy is much wider than that of Ex (note the
different scales in Fig. 2), meaning that the confidence in the most
likely value ofGxy is much poorer than in that ofEx. This reflects the
well-known fact that Gxy is harder to identify accurately than is Ex
from a vibration test.

The average performance over 100 repetitions of the identification
with randomly simulated experiments is given in Table 14. The two
methods are comparable for Ex, but the Bayesian approach is about
1.9 times more accurate for Gxy.

Fig. 2 Posterior �Ex;Gxy� distribution found with the Bayesian

approach.

Table 14 Average performance for the plate-vibration problem with 100 repetitions

Mean value, GPa Standard deviation, GPa

Least-squares Ex � 57:5 ; Gxy � 4:26 For Ex: 0:65 (1.13%) ; for Gxy: 0:15 (3.63%)
Bayesian Ex � 57:5 ; Gxy � 4:26 For Ex: 0:50 (0.88%) ; for Gxy: 0:083 (1.96%)
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VI. Conclusions

We compared two approaches to parameter identification for two
examples: a basic least-squares approach and a statistical approach,
the Bayesian method. Using a simple three-bar truss example we
identified the following conditions under which the basic least-
squares method is systematically outperformed by the Bayesian
statistical approach: 1) different sensitivity of the response compo-
nents to the parameters to be identified, 2) different uncertainty in the
measurements, and 3) high correlation among the response com-
ponents. The ratio of the accuracy of the two approaches depends on
the specific problem, but for the truss problem, we illustrated that it
can reach a factor of 10 when all the effects add up.

We then considered the identification of elastic constants from
natural frequencies of a plate. Using simulated experiments affected
by uncertainty in input parameters, measurement noise, and model
error, we found that the Bayesian approach was more accurate,
especially for identifying the shear modulus, which is typically a
harder-to-identify property of composites.

A final advantage of the Bayesian approach is that it identifies the
probability density function of the properties. This uncertainty
quantification can benefit reliability-based design and optimization
by allowing narrower safety margins, due to the improved uncer-
tainty knowledge on the material properties.

Appendix A: Tutorial Explanation of the Bayesian
Procedure on the Truss Example

To illustrate the Bayesian procedure used and, in particular, the
construction of the likelihood function, we will consider a simple
case in which all quantities are one-dimensional (m� n� 1, see the
notations in Sec. II.A). We consider the three-bar truss problem, in
which we have a single property to be identified (Young’s modulus
E) and a single measurement (the strain in bar C).

Applied to the present case, Eq. (8) of the Bayesian formulation
can be written as

�E="C�"meas
C
�E� � 1

K
�"C=E�"meas

C � � �prior
E �E� (A1)

That is, the distribution ofE (given that in barCwemeasured "meas
C ) is

equal to a normalization constant times the likelihood function
of E (given that we measured "meas

C ) times the prior distribution of E.
The prior distribution used here is the same wide distribution
described in Sec. III.D.

Next, we describe the likelihood function and its construction in
more detail. This function provides an estimate of the likelihood of
different modulus values, given the test result. Seen as a function of
E, we can construct it point by point. That is, wefix anE successively
from �1 to 1 and calculate �"C=E�Efixed�"meas

C �. As mentioned in
Sec. III.D, infinity is truncated to reasonable bounds for the
properties to be identified. For example, let us fix E� 5 GPa. We
substitute thisE back into Eq. (10) and propagate the uncertainties in
the loads p and r in the same formula. This can be done analytically
here, since the strains are linear in the loads, but Monte Carlo
simulation can be used in the general case. Thus, we obtain
�"C=E�5 GPa�"C�, the distribution function of "C, if E is 5 GPa and
given the uncertainties in p and r (see Fig. A1).

We note that if E were 5 GPa, the strain in bar C would be double
its value, as for an E of 10 GPa. That is, �"C=E�5 GPa�"C� is centered
around �5:27 m", compared to the value of �2:87 m", which is the
actual (measured) strain in the bar with the true E of 10 GPa and the
true values of loads (different from the mean values, involved in this
likelihood calculation).

Looking back at the construction of the likelihood function, we
need to take the distribution �"C=E�5 GPa�"C� at the point "C � "meas

C ;
that, is we need to compute �"C=E�5 GPa�"meas

C �. From Fig. A1 we
can see that this point is located in the tail of the distribution
�"C=E�5 GPa�"C�, so the corresponding value of �"C=E�5 GPa�"meas

C �
will be relatively low. That means that the likelihood is relatively low
that we will measure "meas

C ��2:87 m" if E is 5 GPa.

Now let us assume that we fix E� 9:18 GPa and repeat the same
procedure. In this case we will obtain a distribution similar to that in
Fig. A1, except that it will be centered in�2:87 m". This means that
the point�"C=E�9:18 GPa�"meas

C � is the highest point on the distribution,
so the likelihood that we measure "meas

C ��2:87 m" if E was
9.18 GPa is the highest.

In the same way, we can compute �"C=E�Efixed�"meas
C � for a series of

Efixed values within the truncation bounds with a given infinites-
imally small step. If we do this, we obtain l�E� � �"C=E�"meas

C �, the
likelihood function of E given "meas

C , which is a function of E and is
plotted in Fig. A2. As previously mentioned, the most likely value of
E given only the measurement in bar C is E� 9:18 GPa.

Had we used the nominal values of the loads and "meas
C �

�2:87 m", substituted these values back into Eq. (10) and solved for
E, wewould obtainE� 9:18 GPa. It is logical then that we find that
9.18 GPa is the most likely value for Young’s modulus, since we
assumed that the nominal values for the loads are the most likely
ones. However, we considered an unlucky case here, in which the
true values of the loads fell 2� away from their mean values, which
explains why 9.18 GPa is far from 10 GPa, the actual Young’s
modulus of the bars.

Note that even though the likelihood function is centered in
9.18 GPa, there is a small but nonnegligible probability that Young’s
modulus is around 10 GPa (cf. Fig. A2). The true value of 10 Gpa is
actually about 2� away from the mean value of 9.18 GPa, which
seems logical since the true values of the loads were 2� away from
their mean.

At this point we can finalize the Bayesian procedure. We have the
prior distribution of E that we defined in Sec. III.D. We have just

-5.27 

E  fixed at 5 GPa πεC / E=5GPa (εC)

πεC / E=5GPa (εC      )
meas

(εC      ) = -2.87meas εc (mε)

Fig. A1 Likelihood value using the distribution of "C if E were 5 GPa.

Fig. A2 Likelihood function of E given "meas
C .
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calculated the likelihood function of E given "meas
C (see Fig. A2); all

that remains is to apply the Bayesian formulation of Eq. (A1): that is,
multiply the two functions and normalize the resulting distribution.
This is the probability distribution of the identified Young’s modulus
given that we measured, "meas

C .
If we havemore than one parameter to identify, we have to define a

joint probability distribution for the prior. This is illustrated on the
vibration problem. The construction of the likelihood functionwould
also be more time-consuming, since instead of describing an interval
point by point, we would have to describe a surface.

If we have multiple measurement points (for example, strains in
each of the bars), we would have to consider the joint probability
distribution of the measurements and evaluate it at the measurement
point when constructing the likelihood function. This is illustrated on
both the vibration problem and the three-bar truss in Secs. IVand V.

Appendix B: Least-Squares Implicit Weighting
According to Response Sensitivity

Here, we provide the proof of the statement of Sec. IV.B: the
basic least-squares formulation implicitly assigns more weight to
quantities that have high sensitivity with respect to the parameter to
be identified.

For simplicity, we consider only linearmodels of the quantity to be
identified, under the form y� Ax (same notations as in Sec. II). In
this case, the least-squares formulation can be written as shown in
Eq. (B1):

x
 � argmin
x
J�x� (B1)

where

J�x� � 1
2
�Ax � ymeas�T�Ax � ymeas�

Since J is convex in x, the solution stems from solving rJ�x� � 0.
The solution x
 is then found by solving the normal equations:

ATAx
 � ATymeas (B2)

and ATA is usually invertible when m> n (see the notations in
Sec. II.A). The normal equations can also be written as

AT�Ax
 � ymeas� � 0 (B3)

which shows that in the space of the measurements y, the residual
vector Ax
 � ymeas is perpendicular to the model surface whose
directing vectors are Ai. This also means that the solution x
 to the
basic least-squares formulation of Eq. (B1) is obtained by projecting
the experimental measurement point ymeas onto the model surface
y� Ax. This is illustrated in Fig. B1 when m� 2 and n� 1.

To find how different measurements are weighted, we also obtain
solutions based on a single measurement (this is possible since
n� 1). The solution for measurement i is

x
i � argmin
x

1
2
�Aix � ymeas

i �2 for i� 1; . . . ; m (B4)

where subscript i represents the ith line of the respective matrix/
vector. Accordingly, x
i is the parameter found when only the
measurement ymeas

i was used and y
i was the corresponding value
on the surface of the response: y
i � Ax
i. We call x
i the partial
solutions and y
i the corresponding virtual measurements, which are
the projections, along the ith component, of ymeas onto the model
surface y� Ax (see Fig. B1).

We can now investigate how the least-squares solution y
 depends
on the virtual measurements y
i and thus on the partial solutions x
i.
If y
 is closer to y
i, this can be seen as the least-squares procedure
implicitly assigning more weight to y
i. Figure B2 illustrates two
caseswith different slopes. In the case inwhich y1 ismore sensitive to
E variations than is y2 (low slope in the y1–y2 plane), then the basic
least-squares formulation assignsmoreweight to y
1 and the inverse.
We can deduce that which partial solution is assigned more weight
depends on the sensitivity of the response to the parameter to be
identified. Mathematically, this can be quantified by @x
=@ymeas

i .
Deriving the normal Eq. (B2), we obtain

ATA
@x


@ymeas
i

� ATi (B5)

From Eq. (B5) we can deduce that the sensitivity of the identified
parameters to the ith experiment depends on the ith line of A.

After this proof in a general case, it is interesting to analyze how
the least-squares and the Bayesian approaches are represented
graphically for the three-bar truss example. In Fig. B3 we illustrate
the case studied in Sec. IV.B of different strain sensitivity toE, which
translates into different strain magnitudes. The line is the model
surface y� Ax. In our case, x� 1=E and y� f"A; "BgT . The circle is
the experimental measurement and its orthogonal projection on the
model surface (cross) is the least-squares identified modulus,
E� 9:67 GPa. The center of the ellipses, E
Bayes � 9:97 GPa, is the

Bayesian-identified modulus. The ellipses represent the joint
strain distribution function �f"A;"Bg=E�9:97 GPa�f"A; "Bg� due to the
uncertainties in the loads. If we varyE, this is the distribution leading
to the highest likelihood of the experimental measurement, meaning
that if we translate the distribution along the model surface, this is
the distribution for which the outer ellipse gets the closest to the
experimental point. Note that this explanation does not take into
account the impact of the prior,whichwe have shown to be negligible
in our case (see Sec. IV.E), because we have chosen a wide prior.

Figure B3 also helps understand why the basic least-squares
formulation leads to poor results in the case of different sensitivity
to E (i.e., different strain magnitude). Because of the different
sensitivity to E, the model surface (line) has a low slope. The
uncertainties in the loads propagate to the same relative uncertainties
in the two strains, but different absolute uncertainties, due to the
different strain magnitudes, meaning that the joint strain distribution
will be elliptical instead of circular. The low slope in combination
with the elliptical distribution leads the orthogonal projection of the
measurement to be relatively far away from the maximum likelihood
point, as illustrated in Fig. B3.

Fig. B1 Illustration of least-squares solution y� � Ax� and partial

solutions y�i for m� 2 and n� 1.

Fig. B2 Illustration of least-squares solution y� � Ax� and virtual

measurements y�i for two different slopes A. In one case, the basic least-

squares formulation assigns more weight to y�1, in the other case, it

assigns more weight to y�2.
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Appendix C: Bayesian and Least-Squares Behavior
with Respect to Different Response Uncertainty

Similar to the graphical representation provided inAppendix B for
different response sensitivity, we nowprovide an interpretation of the
three-bar truss results in the case of different response uncertainty.
Figure C1 illustrates the case studied in Sec. IV.C of different
uncertainty in the loads, which propagates to different uncertainty in
the strains.We have here the same sensitivity of the strains toYoung’s
modulus, which can be seen by the 45� slope of the model surface.
Note also that the elliptical shape of the joint strain distributions
this time is not due to different strain sensitivity as inAppendixB, but
to different uncertainties in the loads, which propagate to a higher
uncertainty in "A than in "B.

In addition to the joint strain distribution centered in the Bayesian-
identified modulus (full-line ellipses), we also provide what the
distribution would be if the modulus was the one found by the least-
squares approach. This shows that the experimental measurement
has a maximum likelihood on the strain distribution with the
Bayesianmodulus; i.e., themeasurement point is the closest possible
to the outer most ellipse of all possible distributions translated along
themodel surface line. In particular, the strain distribution centered in
the least-squares modulus has a significantly lower likelihood.
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