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Response surface approximations are a common engineering tool, often constructed based on finite element
simulations. For some design problems, the finite element models can involve a large number of parameters.
However, it is advantageous to construct the response surface approximations as a function of the smallest possible
number of variables. The purpose of this paper is to demonstrate that a significant reduction in the number of
variables needed for a response surface approximation is possible through physical reasoning, dimensional analysis,
and global sensitivity analysis. This approach is demonstrated for a transient thermal problem, but we also show how
it can be applied to any finite-element-based surrogate model construction. The thermal problem considered is the
design of an integrated thermal protection system for spacecraft reentry for which a response surface approximation
of the maximum bottom face temperature is needed. The finite element model used to evaluate the maximum
temperature depended on 15 parameters of interest for the design. A small number of assumptions simplified the
thermal equations, allowing easy nondimensionalization, which together with a global sensitivity analysis showed
that the maximum temperature mainly depends on only two nondimensional parameters. These were selected to be
the variables of the response surface approximation for maximum temperature, which was constructed using
simulations from the original nonsimplified finite element model. The major error in the two-dimensional response
surface approximation was found to be due to the fact that the two nondimensional variables account for only part
(albeit the major part) of the dependence on the original 15 variables. This error was checked and reasonable
agreement was found. The two-dimensional nature of the response surface approximations allowed graphical
representation, which we used for material selection from among hundreds of possible materials for the design

optimization of an integrated thermal protection system panel.
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= cross-sectional area, m?

nondimensional convection coefficient (or Biot number)
specific heat, J/ (kg - K)

thickness, m

final reduced number of parameters

convection coefficient, W/(m? - K)

thermal conductivity, W/(m? - K)

height of the sandwich panel, m

half-unit cell length, m

heat flux and total incident heat flux, respectively,
W/m?

number of nondimensional variables in problem X
= reduced number of parameters obtained through
physical reasoning

general and simplified finite element problem
considered, respectively

number of variables of interest in the problem §
temperature and initial temperature, respectively, K
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maximum bottom face sheet temperature, K

time relative to the transient thermal problem, s
duration of the reentry simulation, s

volume, m?

dimensional parameters of interest in problem S
position through the thickness of the panel, m
response sought to the problem S and its response
surface approximation, respectively

= nondimensional thermal diffusivity (or Fourier
number)

= nondimensional temperature

nondimensional heat capacity parameter

= emissivity, W/(m? - K*)

angle of corrugations, deg

nondimensional radiation coefficient
nondimensional position through the panel thickness
density, kg/m?

nondimensionalized version of problem S$*
nondimensional time

nondimensional heat flux

nondimensional response of the problem X

= nondimensional parameters of interest in problem X
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Subscripts

= bottom face sheet
homogenized core
Saffil foam

top face sheet

= web

=NvAaw
]

I. Introduction

IMENSIONAL analysis is a several-hundred-years-old
concept going as far back as Galilei [1]. This concept has its
roots in a very simple idea: the solution to a physical problem has to
be independent of the units used. This means that the equations
modeling a problem can always be written in a nondimensional form.
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In the process, nondimensional parameters are constructed, which,
when done appropriately, are the minimum number of variables
required to formulate the problem.

These basic concepts turned out to be very powerful and,
throughout the past century, dimensional analysis has been extremely
successful in solving scientific and engineering problems and
presenting the results in a compact form. The first theoretical
foundations of dimensional analysis were set by Vaschy [2] and
Buckingham [3] at the end of the 19th century. Since then, and up to
the 1960s, nondimensional solutions have been a major form of
transmitting knowledge among scientists and engineers, often in the
form of graphs in nondimensionalized variables. Then, the advent of
widely available numerical simulation software and hardware made it
easier to obtain solutions to physical problems without going through
nondimensionalization. This led to a reduced interest in dimensional
analysis, except for reduced scale modeling and areas in which
nondimensional parameters have a strong physical interpretation and
allow us to differentiate between regimes of different numerical
solution techniques (Mach number, Reynolds number, etc.).

With the increase in computational power, numerical simulation
techniques such as finite element analysis (FEA) became not only
feasible for single engineering design analyses but also for design
optimization, often in conjunction with the use of surrogate models.
Surrogate models, however, suffer from the “curse of dimension-
ality,” that is, the number of experiments needed for a surrogate for a
given accuracy increases exponentially with the number of
dimensions of the problem.

This issue can be generally attacked in two ways. One is by
reducing the cost of a single analysis, thus allowing a large number of
analyses to be run for the response surface approximation (RSA)
construction. The other is by reducing the number of design
variables, thus reducing the dimensionality of the problem. Many
techniques, often referred to as model reduction, have been devel-
oped to deal with these problems, including static and dynamic
condensation, modal coordinate reduction, the Ritz vector method,
component mode synthesis, proper orthogonal decomposition, and
balanced realization reduction. For an overview of these techniques,
the reader can refer to Qu [4].

A simple, yet relatively little-used way of reducing the
dimensionality of the surrogates or response surface approximations
is by applying dimensional analysis to the equations of the physical
problem that the finite element (FE) model describes. Kaufman et al.
[5], Vignaux and Scott [6], and Lacey and Steele [7] showed that
better accuracy of the RSA can be obtained by using nondimensional
variables. This is mainly because, for the same number of numerical
simulations, the generally much-fewer nondimensional variables
allow a fit with a higher-order polynomial. Vignaux and Scott [6]
illustrated such a method using statistical data from a survey,
whereas Lacey and Steele [7] applied the method to several engi-
neering case studies, including an FE-based example.

In [8], Venter et al. illustrated how dimensional analysis can be
used to reduce the number of variables of an RSA constructed from
FEAs modeling a mechanical problem of a plate with an abrupt
change in thickness. The dimensional analysis was done directly on
the governing equations and the boundary conditions that the FEA
solved, reducing the number of variables from nine to seven.

Dimensional analysis can be used to reduce the number of
variables in any FE-based model. Indeed, FEA models an underlying
set of explicit equations (ordinary or partial differential equations,
boundary conditions, and initial conditions). These equations,
whether coming from mechanical, thermal, fluids, or other problems,
can be nondimensionalized in a systematic way using the Vaschy—
Buckingham theorem (or Pi theorem) [2,3]. Systematic non-
dimensionalization techniques are also described in [9,10].

Although dimensional analysis is a natural tool to reduce the
number of variables through which a problem has to be expressed, an
even-higher reduction can be obtained if it is combined with other
analytical and numerical techniques. The aim of this paper is to show
that, through a combination of physical reasoning, dimensional
analysis, and global sensitivity analysis, a drastic reduction in the
number of variables needed for an RSA is possible.

The basic idea is that, even after nondimensionalization, it is still
possible to end up with nondimensional parameters that only have a
marginal influence on the quantity of interest for the design problem
considered. Determining and removing these parameters can further
reduce the total number of variables. This can be done at two
moments. Before nondimensionalization, physical reasoning can
allow the formulation of a set of assumptions that simplify the equa-
tions of the problem. After nondimensionalization, a global sensi-
tivity analysis, for example, Sobol [11], can be used to remove any
remaining parameters with negligible effects.

In Sec. II, we present the general methodology for reducing the
number of variables in a response surface approximation. In the rest
of the paper, we apply the method to solve a transient thermal
problem of spacecraft atmospheric reentry, wherein the maximum
temperature attained is critical. In Sec. III, we describe the thermal
problem of atmospheric reentry and, in Sec. IV, the corresponding
FE model used in the analysis. A dimensional analysis on a
simplified problem in conjunction with a global sensitivity analysis is
used in Sec. V to reduce the number of variables. The RSA is
constructed in Sec. VI using the accurate FE model and the ability of
the RSA to account for all the variables of interest to the problem
tested. In Sec. VII, we discuss the advantages of the procedure in
terms of computational cost. Finally, in Sec. VIII, we give a brief
overview of how the RSA was used to carry out a material compar-
ison and selection for the design and optimization of an integrated
thermal protection system (ITPS). Section IX presents concluding
remarks.

II. Methodology for the Reduction of the Number of
Variables in a Response Surface Approximation

We consider the general problem in which we are interested in the
response Y of an FE problem denoted as S. The response Y poten-
tially depends on s parameters of interest, denoted as w*=
{w, ..., w,}. We consider the case in which an RSA of Y is needed.
If s is high (>10), then it can be beneficial to seek to construct the
RSA in a lower-dimension space. Indeed, an RSA in a lower-
dimension space reduces the computational cost (number of simu-
lations required) for a fixed accuracy or improves the accuracy for a
fixed computational cost. A low dimension is also preferable,
especially if the RSA is later used for optimization.

To construct the RSA as a function of a small number of
parameters, we use the following procedure involving three major
steps.

1) Using preliminary physical reasoning, we can often determine
that only r out of the s initial parameters (r < s) significantly affect
the response Y. Indeed, in many engineering problems it is known
based on empirical, theoretical, or numerical evidence that some
parameters have little effect on the response for the particular
problem considered. Different choices for the numerical model or the
use of homogenization can also allow simplification of the problem.
The simplified problem involving only w” = {w,...,w,} is
denoted as S*.

Sometimes a designer might not have enough domain expertise to
formulate all the simplifying assumptions through physical
reasoning. If little or nothing is known in advance that can help
simplify the problem, this step can then be aided by a global
sensitivity analysis (GSA) as described by Sobol [11]. GSA is a
variance-based technique, quantifying the part of the variance of the
response explained by each parameter and thus determining the
parameters that have negligible effects. However, the GSA can only
be carried out if the computational cost does not become prohibitive.
If nothing works, it is always possible to go directly to step 2.

The aim of step 1, when successful, is to define the simplified
problem S*, which will facilitate the next step, the nondimen-
sionalization.

2) In this step, we further reduce the number of variables by
determining the nondimensional parameters characterizing the
problem. The dimensional problem S* can indeed be transformed
into the nondimensional problem X using the Vaschy—Buckingham
theorem [2,3]. A systematic nondimensionalization technique is
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provided in [9,10]. We can then express the nondimensional
response V¥ of the problem X as a function of the nondimensional
parameters @ = {wy, ..., ®,}. According to the Vaschy-Bucking-
ham theorem, g < r.

Note that the problem X is equivalent to S*, and so no additional
approximation is involved in this step. However, because v is a
solution to X, which is equivalent to S*, it will only provide an
approximate solution to the initial problem S.

3) Out of the @? nondimensional parameters that we have
determined in step 2, not all will necessarily have a significant
influence on the response . To determine and remove parameters
with negligible influence, we carry out in this step a GSA (cf. Sobol
[L11]). After such parameters have been removed, we can write
approximately as a function of @/ = {w,,...,®,}, with f < q.

At the conclusion of the process, we have f < g < r < s. The
possibility of obtaining equality everywhere, while theoretically
possible, is extremely unlikely for an actual engineering problem,
and it is hoped that we achieved f significantly smaller than s after
these three steps.

At this point we have determined that the approximate non-
dimensional response ¥ approximately depends only on the
parameters w/. However, our final aim is to construct a response
surface approximation of Y, the actual response, and not of v, which
is the response of the approximate problem X. Accordingly, we
chose to construct an RSA Y’ of Y, but as a function of the reduced
number of nondimensional parameters @ .

That is, even though we made simplifying assumptions and a GSA
to determine @/, we will construct the RSA function of these o/
parameters using simulations of Y, coming from the initial non-
simplified FE model of S. This allows part of the error induced by
constructing the RSA function of @/ instead of w* to be compensated
by fitting to the actual nonsimplified FE simulations of Y.

The sampling for the RSA simulations is done in the w/ space. The
RSA Y’ = f(w’) is then constructed, and the quality of its fit can be
analyzed using classical techniques (prediction sum of squares
(PRESS) error, for example, [12,13]). Note, however, that these
analyses provide mainly the quality of the fit in the reduced non-
dimensional variables @’ but not in the initial variables w*. To
remedy this, an additional validation step can be carried out. A
number of additional points are sampled in the initial, high-
dimensional w* space. The FE response Y is calculated at these
points and compared with the prediction of the reduced non-
dimensional RSA Y’ to make sure the accuracy of the RSA Y’ is
acceptable.

In the rest of this paper, we show how we applied this procedure to
a transient thermal problem of spacecraft atmospheric reentry, for
which a response surface approximation of the maximum temper-
ature was required. Note that the application problem presented is a
one-dimensional heat transfer problem. However, the general
method described can be applied as well to two- or three-dimensional
finite element problems. Steps 1 and 3 are not affected much by
moving from one- to three-dimensional models, other than maybe
through increased computational cost. Nondimensionalizing the
governing equations of the problem in step 2 may be slightly more
complex. However, although nondimensionalization is simple
enough to be often applied by hand to one-dimensional problems,
there are systematic nondimensionalization techniques [9,10] that
can be applied to any governing equations and boundary conditions.

A final note concerns the application of the nondimensional RSA
to a design optimization framework. Because the RSA is in terms of
nondimensional parameters, these could be chosen as variables for
the optimization algorithm. This is, however, often a bad choice,
because it is often difficult to move from a point (the optimum, for
example) in the nondimensional variables space to the corresponding
design point in the physical, dimensional variables space. A better
choice in this case is to do the optimization in terms of the
dimensional variables. A typical function evaluation step in the
optimization routine would then look like the following: dimensional
variables point at which the response is required — calculate the
corresponding nondimensional variables for this point — calculate

the response at this point using the nondimensional RSA. Although
this may leave a large number of design variables, that is usually
affordable because surrogate-based function evaluations are
inexpensive.

III. Integrated Thermal Protection System Thermal
Problem of Atmospheric Reentry

An ITPS is a proposed spacecraft system that differs from a
traditional TPS in that it provides not only thermal insulation to the
vehicle during atmospheric reentry but it carries structural loads at
the same time. Thus, the thermal protection function is integrated
with the structural function of the spacecraft. Our study involves an
ITPS based on a corrugated core sandwich panel construction. The
design of such an ITPS involves both thermal and structural
constraints. In the present paper, we focus on the thermal constraint
represented by the maximum temperature of the bottom face sheet
(BES) of the ITPS panel. The combined thermostructural approach
was presented in separate articles [14,15].

An RSA of the maximum BFS temperature was needed to reduce
computational time. The RSA is used to carry out material selection
for the ITPS panel.

To calculate the maximum BFS temperature, we constructed an
FE model using the commercial FE software Abaqus® [16]. The
corrugated core sandwich panel design as well as the thermal pro-
blem of atmospheric reentry is shown in Fig. 1. The ITPS panel
is subject to an incident heat flux assumed to vary, as shown in
Fig. 2. This heat flux is typical of a reusable launch vehicle.

Radiation is also modeled on the top face sheet (TFS), whereas
the BFS is assumed to be perfectly insulated, which is a worst-case
assumption, because if heat could be removed from the BFS the
maximum temperature would decrease, becoming less critical. The
core of the sandwich panel is assumed to be filled with Saffil
foam insulation, whereas we explore different materials for the
three main sections, the TFS, BFS, and web (cf. Figure 1), to
determine the combinations of materials that will result in low BFS
temperatures.

IV. Finite Element Model of the Thermal Problem

The FE thermal problem is modeled as a one-dimensional heat
transfer analysis, as shown in Fig. 3. The core of the sandwich panel
has been homogenized using the rule of mixtures formulas:

_ PwVw + psVs _ pwdw + ps(psin 0 —dy)
Ve psinf

pe M

_ CwowVw + CspsVs _ pwCwdw + psCs(psinf —dy)

C -
¢ PcVe pwdw + ps(psin® —dy)

(@3]

Incident heat flux

777

g Radiation & Convection

1///

TFS

SAFFIL
Web

BFS perfectly insulated

2p
Fig. 1 Corrugated core sandwich panel depicting the thermal
boundary conditions and the geometric parameters.
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Fig. 2 Incident heat flux (solid line) and convection (dashed dotted line)
profile on the TFS surface as a function of reentry time.
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It has been shown in [14] that a one-dimensional FE model can
accurately predict the temperature at the bottom face sheet of the
sandwich panel. The maximum difference in the BFS temperature
prediction between the one- and two-dimensional model is typically
less than 8 K. For this preliminary design phase of the ITPS, this
difference is acceptable. Radiation, convection, and the incident heat
flux (as shown in Fig. 1 and 2) were modeled in the Abaqus® one-
dimensional model using four steps (three for stage 1 of Fig. 2 and
one for stage 2). Fifty-four three-node heat transfer link elements
were used in the transient analyses.

For this one-dimensional thermal model, the governing equations
and boundary conditions are as follows.

Heat conduction equation:

9 (k(x, 7T t)) O et ) LAASILL Y
X ox ot
Initial condition:
T(x,t=0)=T, (5)

Boundary conditions:

0c=0.0 =k "D 0,0~ 70,0 ~ ) T(0.0)
x=0
©)
O(x=L,1)=0 (7

S

Incident heat flux Qi(t)
g g g & Radiation & Convection(t)
LLL L
TFS material properties + 0
Homogenized core material properties
BFS material properties 4+ L
7

Fig. 3 One-dimensional heat transfer model representation using
homogenization (not to scale).

Note that g;(¢) is the heat influx and Ah(f) is the convection
coefficient at the TFS, which vary with time of reentry as shown in
Fig. 2. Most of the material properties are temperature dependent
and, due to the different materials in the different ITPS sections, most
material properties also depend on the position x. The temperature
and spatial dependency make nondimensionalization of the previous
equations cumbersome. Furthermore, these dependencies increase
the number of nondimensional parameters needed, which is contrary
to our goal. Accordingly, the thermal problem is studied in the next
section under several assumptions that allow easier nondimension-
alization of the equations as well as a reduction in the number of
variables.

V. Determining the Minimum Number of Parameters
for the Temperature Response Surface
A. Simplifying the Problem

Our goal for the ITPS study is to determine which materials are the
best for use in the ITPS panel based on the maximum BFS
temperature. Considering that the expected range of this temperature
when the materials are varied is about 250 K, an approximation of the
temperature with an accuracy of the order of 12.5 K (5%) is
considered acceptable for the purpose of material selection.

The thermal model presented in the previous section involves 13
material parameters (the specific heat C;, conductivities k;, and
densities p; of the TFS, BFS, web, and Saffil, as well as the emissivity
¢ of the TFS), of which most are temperature dependent. Some of
these parameters are considered fixed, including ¢ as well as all the
foam parameters (Saffil has been determined in previous studies
[17,18] to be the best-suited foam for use in similar thermal
protection systems). Note that the emissivity ¢ is defined as the
relative emissivity times the Stefan—Boltzmann constant. The
relative emissivity of the TFS depends more on surface treatments
than on the nature of the TFS material (thus, a typical value for this
kind of application of 0.8 was used [18,19]). Fixing these parameters
leaves nine material variables. Describing the temperature
dependency of the material properties would increase this number
further.

On top of the nine material parameters, we also have six geo-
metric design variables (cf. Figure 1) that we use to find the
optimal geometry for each material combination. In total, we
have 15 variables of interest for the maximum BFS temperature
determination.

To reduce the number of design variables, the equations were
studied under several simplifying assumptions that removed
parameters that have a negligible role on the maximum BFS
temperature. These assumptions have been established and checked
on a Nextel(TFS)-zirconia(web)—aluminum(BFS) ITPS material
combination with the dimensions given in Table 1. The assumptions
are as follows:

1) The three thermal properties of the TFS (Cy, kr, and p;) have a
negligible impact on the maximum BFS temperature, mainly due to
the small thickness of the TFS (about 2.2 mm compared with a total
ITPS thickness of about 120 mm). This assumption allowed
removing Cr, ky, pr, and dy from the relevant parameters
influencing the BFS temperature.

2) The temperature is approximately constant through the BFS,
because the BFS thickness is small (typically 5 mm thick compared
with a total ITPS thickness of 120 mm) and its conductivity is about 1
order of magnitude higher than that of the homogenized core. This
assumption allowed the removal of ky and the simplification of the
boundary condition at the BFS.

3) The temperature dependence of the material properties have
been simplified as follows. In the FE model, temperature dependence
has been included for all materials, but the largest dependence was
for the Saffil foam. Hence, in the simplified problem, the TFS, web,
and BFS materials were assigned constant properties provided by the
CES 2005 material database.! For Saffil, the material properties were

ICES Selector Edupack 2005 material database and selection software by
Granta Design, 2005.
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Table 1 Dimensions of the ITPS used among other to establish the simplifying assumptions. These dimensions were optimal
for an Inconel(TFS)-Ti6Al4V(Web)-Al(BFS) ITPS (cf. [14])

Parameter dr, mm dp, mm

dy, mm

0, deg L, mm p, mm

Value 2.1 5.3

3.1

87 120 117

assigned values at a representative temperature chosen so as to
minimize the difference between the maximum BFS temperature
when using the constant values and the one when using temperature-
dependent values for an ITPS design with the dimensions given in
Table 1 and a Nextel(TFS)-zirconia(web)—aluminum(BFS) material
combination. The effects of varying the materials were then found to
be small enough to use this constant value for the range of materials
we consider (more detailed results are provided at the end of Sec. VI).

These assumptions reduced the number of relevant material
parameters from 15 to 10 and also simplified the problem so that it
can be easily nondimensionalized, as will be shown next.

B. Nondimensionalizing the Thermal Problem

Under the previous simplifying assumptions, the thermal problem
is equivalent to the one shown in Fig. 4 and its equations can be
rewritten as follows.

Heat conduction equation:

02T (x, 1) 0T (x, 1)
kCT = pcCc 9 for 0 <t < Tend (8)
Initial condition:
T(x,t=0)=T,; ©
Boundary conditions:
T (x,t T (x,t
Qout =_kC3—) =ppCpdp (.7 (10)
X x=d¢ at x=d¢
aT (x, 1)

O = _kc

=0Q,(t) — eT(0,1)* — h(NT(0,r) (11)
ox 0

x=

To nondimensionalize these equations, we use the Vaschy—
Buckingham theorem (or Pi theorem) [2,3], which also provides the
minimum number of nondimensional variables. The theorem states
that we have to count the total number of variables and the
corresponding number of dimensional groups. The variables and the
groups are listed in Table 2.

We have a total of 12 variables in four independent dimensional
groups, namely, length, time, temperature, and power (in meters,
seconds, Kelvin, and watts). From the Vaschy—Buckingham
theorem, we know that we can have a minimum of 12 —4 =238
nondimensional variables, which are provided in Table 3.

In terms of these nondimensional variables, the simplified thermal
problem can be written in the following nondimensional form.

Q; Qrad + Qconv
0
Homogenized
core material
pe; Ce, ke
+ dc
& X
Qout v

Fig. 4 Simplified thermal problem for dimensional analysis.

Heat conduction equation:

’T  aTr
ﬂa—gz—a forO<t<1 (20)
Initial condition:
M r=0)=1 @1
Boundary conditions:
aTr ar
—B=| =y— (22)
Pl ™" o,
aTr .
——| =¢(t) —«k-T0,1)* - Bi(r) - T'(0, 7) (23)
98 Je—o

The complete set of nondimensional variables needed for the
problem is given in Eqs. (12-19) in Table 3. Note that the problem’s
equations were nondimensionalized only to determine a reduced
number of nondimensional parameters, which will be used as
variables of the response surface approximation. The nondimen-
sional formulation is not used for solving the problem, nor do the
finite element simulations use this formulation directly.

The nondimensional temperature I" can be expressed as a function
of the nondimensional distance £ and the nondimensional time 7, as
well as a function of five other nondimensional parameters. Because
at the maximum BFS temperature we are at a fixed location and we
are not interested in the time at which this maximum occurs, the
nondimensional distance £ and the nondimensional time t are not
needed for the maximum BFS temperature RSA.

The physical interpretation of the remaining five nondimensional
parameters in Egs. (15-19) is the following. 3, the Fourier number or
a nondimensional thermal diffusivity, is the ratio of the rate of heat
conduction and the rate of heat storage (thermal energy storage) of
the homogenized core. y is the ratio of the heat capacity of the BFS
and the heat capacity of the homogenized core, and « the ratio
between the rate of radiation and the rate of heat conduction. ¢ is the
ratio of the incident heat flux and the rate of heat conduction, or can
be seen as a nondimensional heat flux. Finally, Bi, the Biot number,
is the ratio of the rate of convection and the rate of heat conduction.

We can note that the three nondimensional parameters k, ¢, and Bi
are all proportional to d./k, whereas all the other parameters
defining «, ¢, and Bi are fixed in our study. Indeed, we are only
interested in varying the materials and the geometry, but the initial
temperature T, the emissivity €, the incident heat flux profile Q;(¢),
and the convection film coefficient profile /() are all fixed in the
present study (cf. Figure 2 for the profiles of Q;(¢) and A(7) used).
This means that for our purpose we can consider only one of these
three nondimensional parameters: «, for example.

Summing up, simplifying assumptions together with dimensional
analysis allowed us to determine that we can construct a response
surface approximation of the maximum BFS temperature function of
the three parameters, f, y, and «. An initial third-degree polynomial
response surface in these three parameters was constructed from 40
finite element simulations using Latin hypercube sampling (LHS)
and used for a global sensitivity analysis, according to Sobol’s
approach [11]. We found that variable 8 accounts for 35.7% of the
model variance and variable y accounts for 64.1% of the model
variance, whereas variable k accounts for only 0.06% of the model
variance (corresponding to 9.3 x 1072 K). Considering the 12.5 K
accuracy requirement we set ourselves for the material selection, this
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Table 2 Dimensional groups for the thermal problem

Variable T T; by de t fend
Unit K K m m S S
Variable ke pcCe peCpdy Q; £ h
Unit W W W W w W
mK m3.K m>K m? m?.K* m?2.K

Table 3 Nondimensional parameters of the problem

FeT 12 =% (13)

t;d -t 1 d]g‘i::gc B 4

% - (16) dck”"CT? —« an

dif}?) =¢( (18) h(]iﬂ = Bi(1) (19)
C

means that we can effectively model the maximum BFS temperature
with only the two variables 8 and y. Note that the GSA was carried
out using an approximation of the response. This is reasonable
because in the next section we check and validate the validity of the
approach in more detail.

From a physical point of view, the fact that « has a negligible role
can be explained as follows. « is proportional to d/ k¢, which is also
present in 8. That means that, if we want to change « while keeping
constant, we need to also modify .4 (Which is the only other variable
in B that does not appear in either y or k). If we increase k by
decreasing k., we need to also increase 7,4 by a certain amount to
keep B constant. Decreasing k¢ has the effect of lowering the BFS
temperature, whereas increasing f.,q has the effect of making it
higher. From the global sensitivity analysis, it turns out that these two
effects cancel out, which explains why « has very little impact. Note
that both d and k. are relevant to the problem and that neither of
them could be neglected. Parameter k, which is proportional to
d¢/ke, turns out, however, to have a negligible impact based on the
GSA results. This is because both d and k. appear in the remaining
two nondimensional parameters, 8 and y.

A summary of the procedure used to reduce the number of
variables needed for constructing the RSA from 15 to 2 is given in
Fig. 5.

The reduction obtained is higher than what could have been
obtained by applying any single technique. The use of only
simplifying assumptions based on physical reasoning allows a
reduction from 15 to 10 variables. GSA alone on the initial problem,
which can be seen as an initial screening of the variables, would have
allowed a reduction from 15 to 9 variables. Such a GSA showed that

parameters dy, kp, pr, Cr, kg, and 6 have negligible effects.
Applying the GSA to the original problem is, indeed, almost
equivalent to the simplifying assumptions we arrived at based on the
physical understanding of the problem, which is not surprising.
Depending on the complexity of the temperature dependency of the
material properties, dimensional analysis alone could have achieved
a maximum reduction from 15 to 8 (this reduction is for the case in
which no temperature dependency is considered). Thus, we can see
that none of the three techniques alone (simplifying assumptions,
nondimensionalization, GSA) could have achieved the reduction
from 15 to 2 obtained by combining all three.

VI. Maximum Bottom Face Sheet Temperature

Response Surface Approximation

An RSA in the two nondimensional parameters 8 and y was then
constructed. We chose to construct a third-degree polynomial
response surface (PRS) in 8 and y. These two variables account for
the thermal material properties (C;,k;, p;) as well as for the
geometric parameters of the ITPS panel (d;, p, L, 0), as shown in
Eqgs. (24) and (25). These equations were obtained by substituting the
expressions of pc, Cc¢, and kq from Egs. (1-3) back into the
nondimensional parameters 8 and y of Egs. (15) and (16).

[kwdy + ks(psin — dy)] - teng

b= (L —0.5d; — 0.5dp)? - [pwCwdy + psCs(psin 6 — dy)]
(24)
Y= dgpgCppsinf
(L —0.5dr — 0.5dp) - [pw Cwdw + psCs(psin — dy)]
(25)

Note that a given (8, y) point can be obtained by a multitude of
combinations of the 15 individual variables (the nine materials
properties and six geometric parameters discussed in Sec. V.A). If
the simplifying assumptions we made are exact, then all the different
parameter combinations that lead to an identical (8, y) couple should
have the same maximum BFS temperature. If, on the other hand, the
effect of the simplifying assumptions is large, then the difference in
the BFS temperature for different combinations of the same (8, y)
couple would be large as well. Indeed, even if two points have the

[eTeTe Tl oo R LR TR T [ )R [pe [0 [ [ P | O]

Simplifying assumptions

15 variables

[L]p]® |dn[de]pe | Colk[omw]Cu]

Nondimensionalization

10 vars.

IR

Global sensitivity analysis

7]

5 vars.

]

2vars.
Fig. 5 Summary of the dimension reduction procedure for the ITPS problem.
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Table 4 Lower and upper bounds used for sampling in the 15 variables space (all units are SI)

kw pw  Cw kg pp Cy  kr  pr

Ccr  dr dp dy 6 L »

LB 2 2500 500 2 1550 900

3 2000
UB 7 6000 950 50 3000 1820 50 5000

500 0.001
1700 0.0037 0.007

0.0046 0.00224 80 0.102 0.099
0.00416 90 0.150 0.150

Table 5 Ranges of the nondimensional design variables

Variable

14
Range 0.1-0.5 0.6-2.4

same (B, y) values, they might not have the same values of the other
parameters that we ignored through simplifying assumptions or
global sensitivity analysis.

The design of experiments for constructing the RSA involved
sampling 855 LHS points in the initial 15-dimensional space with
the bounds provided in Table 4. 8 and y were calculated for each of
these points, and a subset of 20 out of the 855 points was selected
according to the D-optimality criterion in the (8, y) space within
the bounds given in Table 5. FE analyses, described in Sec. IV and
involving none of the simplifying assumptions done for
nondimensionalization, were run at these 20 points and the third-
degree PRS was constructed in (8, ). This RSA is represented in
Fig. 6. One of the advantages of having only two variables in the
RSA is an easy graphical representation of the results. This
graphical representation possibility will be later used for the
material selection.

The RMS error in the approximation was 1.09 K, the cross-
validation PRESS error 1.96 K, and the R? 0.99989 (the range of the
RSA is about 250 K). These are satisfactory error measures for our
application, but they poorly account for the total error involved in
using this RSA. Indeed, part of the total error is due to the fact that the
FE results, obtained without the simplifying assumptions, will not be
the same for different combinations of the dimensional parameters
corresponding to an identical (B, y) couple. This error is poorly
accounted for with only 20 points. Instead, to check this error we
randomly sampled 100 out of the 855 LHS points in the 15-
dimensional space. We calculated the maximum BFS temperature at
these 100 points using FE analyses and compared it with the two-
dimensional variable RSA predictions. We obtained the following
errors: the RMS error was 2.74 K, the mean of the absolute error was
2.1 K, and the standard deviation of the absolute error was 1.70 K.
These errors are well within the 12.5 K accuracy requirement we set
ourselves for the material selection.

Note that an alternative would have been to construct the RSA
directly using the 20 + 100 points and look only at the corresponding
PRESS error, which leads to similar results.

If we wanted to know how much of the error is due to each of the
techniques used (simplifying assumptions, dimensional analysis,

Thax s (K)
600

550
500

25 0.1

Fig. 6 Maximum BFS temperature RSA.

GSA), we can note the following. Dimensional analysis alone never
involves any error because the nondimensional equations are strictly
equivalent to the initial ones. GSA turned out, in our case, to give
very good results. Indeed, we found that 99.94% of the variance of
the response could be explained by two variables. Because we
showed that three out of the five variables are equivalent to each other
and account for this very small part of the variance, the error of going
from five to two variables is likely to be very small in our case. This
means that most of the error in the RSA is explained by the
simplifying assumptions.

To gain more insight into where the maximum errors occur and
which simplifying assumptions have the most impact, antioptimiza-
tion [20,21] of the error in the RSA was carried out. The anti-
optimization process looks to find the places (i.e., materials and
geometries) with the highest error in the RSA and, by looking at the
designs corresponding to the antioptimum, we can understand what
causes these errors. Antioptimization was carried out in [15]. It
showed that the RSA has poor accuracy when the geometry is very
different from the geometry for which the representative temperature
of assumption 3 (cf. Sec. V.A) was established. For these unusual
geometries, the representative temperature shifts due to the
temperature dependence of the core; this shift is not accounted for by
the RSA, which explains the poor accuracy for these geometries. To
further improve the accuracy of the RSA for a large range of
geometries, we would have to add nondimensional parameters that
account for the temperature dependence. However, for the geometry
that we will use for the RSA in the next section, the maximum
absolute error among eight test points corresponding to actual
material combinations was 7.6 K with a mean of 1.87 K (see Fig. 7).
The figure shows the absolute error A of the response surface
estimates compared with the FE predictions for eight different
material combinations (format for the material combination names:
web material-BFS material). The TFS material is an alumino—
silicate—Nextel 720 composite laminate except in the reference all-
titanium design. The maximum BFS temperature from the RSA is
superposed as a contour plot, with the bottom (330 K) and the top
(540 K) contour lines labeled.

For varying geometries as well as varying materials, the
antioptimization carried out in [15] showed that the worst-case error
is 9.05 K. Note that we compare the RSA predictions with the FE
results, which also have limited accuracy. A convergence study on
the finite element model showed that the discretization error for the

0.5 T ——
ﬂ s/ / All Titanium TPS
s/ i ° .
A=T76K
o

0.4

SMG | Ti3AI5Mo
A=0.8K
o

Ti6Al5410. 5Mo = Epoxy/earbonfiber

A=25K
e)

0.3fF

Fictitiousftest material .\.lmnumrj__uv—f""‘
A=04K e
0_~

0.2}
Zirconia +Epoxyca oiiia — Ti3jl5Mo
A=14K
oK oo Tne
0.1 L L
0.6 0.8 1 12 1.4 16 1.8 2 2.2

Fig. 7 Absolute error A of the response surface estimates compared
with the FE predictions.
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BFS temperature is less than 0.007 K. Accordingly, considering that
the errors in the RSA are of the order of 10 K, we can assume the finite
element simulations are exact, meaning that all the error is considered
to come from the use of the dimension reduction method.

These errors are within the 12.5 K requirement we set ourselves for
the material selection.

VII. Response Surface Approximation Construction
Computational Cost

The possibility of graphical representation of the two non-
dimensional variables RSA is of great benefit in our case. Most of
the problems, however, can not be reduced to only two or three
nondimensional variables. In these other cases, constructing the
RSA in nondimensional variables can still benefit the computational
cost.

In our case, we used 40 FE simulations for the global sensitivity
analysis in three-dimensional space, 20 simulations for constructing
the third-degree PRS in (B, y) and 108 simulations to verify the
accuracy of the RSA. In total, we used 168 simulations.

Constructing the maximum BFS temperature RSA in the 15 initial
variables leads to following results. A linear PRS in the 15 variables
required 32 FE simulations and led to an RSA with an RMS error of
9.16 K, aPRESS error of 12.9 K, and an R? of 0.969 (recall the range
of the RSA is about 250 K). A second-degree PRS in the 15 variables
required 272 FE simulations and led to an RSA with an RMS error of
1.23 K, a PRESS error of 1.78 K, and an R? of 0.99989.

We can note that constructing the third-degree PRS in the two
nondimensional variables had an overall computational cost about
40% lower than constructing a second-degree PRS in the initial 15
variables, while the error was maintained at an acceptable level for
our application.

Note also that in most problems a second-degree PRS is the
minimum usable, linear PRS being very rarely acceptable. Often,
third-degree PRS are even required to achieve acceptable error
measures. For third-degree PRS, the computational cost difference
between using all the variables or using the reduced number of non-
dimensional variables can become very significant. For the thermal
problem for example, a third-degree PRS in the 15 dimensions would
have required 1632 experiments.

VIII. Applying the Response Surface Approximation
for Comparison of Materials for the Integrated
Thermal Protection System

The graphical representation possibility of the two-dimensional
RSA was used next for comparison of alternate materials for the ITPS
sections. For this part, the dimensions of the ITPS are once again
fixed to the values in Table 1.

We used the CES 2005 material database software. Constraints on
properties such as maximum service temperature, fracture tough-
ness, and Young’s modulus were imposed during the search in the
database to avoid unreasonable materials.

To compare the web materials, the BFS material was fixed to an
aluminum alloy 2024 and the potential web materials were plotted in
the (B, y) plane with the RSA of the maximum BFS temperature
superposed as a contour plot, as shown in Fig. 8. Note that in this
figure numerous materials are grouped under generic names (denoted
as an asterisk), such as stainless steels, nickel chromium alloys, or
cobalt superalloys.

Figure 8 shows that materials such as alumino—silicate/Nextel 720
composites or zirconia ceramics provide a significant reduction in the
maximum BFS temperature compared with metals such as Ti alloys
or nickel chromium alloys, which were considered in previous
designs (cf. [14]). Because we seek materials leading to a low

0.5
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0.4~

0.35-

0.3

0.25

0.2

0.15 -

Fig. 8 Thermal comparison of materials suitable for the web using the contour plot of the maximum BFS temperature RSA.
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maximum BFS temperature, these materials were selected for further
study as good potential candidates for the web of the ITPS panel.

The same material selection procedure was applied for BFS
materials. The complete results are given in [15]. In summary, the
material selection process based on the RSA constructed here
identified a small number of good potential material candidates for
the different sections of the ITPS. These materials were used in an
optimization routine developed for the ITPS. The optimization
procedure used is the one presented in [14], which seeks to minimize
the mass of an ITPS panel by finding the optimal geometry para-
meters for a given material combination. Applying it to the different
material combinations found through this material selection process
allowed us to obtain both the best-suited material combination and
the optimal corresponding geometry for the ITPS panel.

IX. Conclusions

The present paper illustrates the use of combined physical
reasoning, dimensional analysis, and global sensitivity analysis to
significantly reduce the number of variables in RSA.

Nondimensionalizing the exact equations involved in the finite
element analysis, while reducing the number of variables, can be
relatively cumbersome and lead to a still relatively high number of
nondimensional parameters. Some of these parameters might only
have marginal influence on the quantity of interest. In this case, the
process can be aided by simplifying assumptions and a global
sensitivity analysis that can help further reduce the number of non-
dimensional parameters by keeping only those that control most of
the variation of the quantity of interest. It is important to note that
removing variables that have a small impact on the problem can
have relatively small detrimental effects on the accuracy of the
RSA, because the RSA is fitted to the finite element simulations
obtained without simplifying assumptions, thus allowing for error
compensation.

The presented approach is general and can be applied to any finite-
element-based response surface construction. It was used here with
success on a transient thermal heat transfer problem for an ITPS.
Dimensional analysis in combination with several simplifying
assumptions and a global sensitivity analysis allowed the reduction
of the number of parameters of the response surface approximation of
the maximum temperature from 15 to only 2 while maintaining
reasonable accuracy of the RSA.
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