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Abstract 
The design of an integrated thermal protection system (ITPS) for spacecraft reentry involves thermal as well as structural 
constraints. In the present paper we focus on the thermal constraint represented by the maximum temperature of the 
bottom face of the ITPS panel, which is not allowed to exceed a critical value. A response surface approximation (RSA) of 
this temperature was needed in order to reduce optimization computational time. The finite element model used to 
evaluate the maximum temperature at the design of experiment points involved a total of 15 parameters of interest for the 
design: 9 thermal material properties and 6 geometric parameters of the ITPS model. In order to reduce the dimensionality 
of the response surface approximation, dimensional analysis was utilized. A small number of assumptions simplified the 
equations of the transient thermal problem allowing easy nondimensionalization using classical techniques. The 
nondimensional equations together with a global sensitivity analysis showed that the maximum temperature mainly 
depends on only two nondimensional parameters which were selected to be the design variables for the RSA. It is 
important to note that the RSA was still constructed using the accurate finite element model which does not employ any of 
the simplifying assumptions used to determine the nondimensional parameters. The two variable RSA was checked for its 
accuracy in terms of geometric parameters and material properties variables at 855 additional test points using the finite 
element model. The error in the RSA was not due to the quality of the fit but mainly due to the reduction from 15 to only 
two variables. This error had an average value of 2.31 K, the standard deviation of the error was 2.01 K and the maximum 
error among the 855 points was found to be 14.7 K (for a range of the temperature RSA of about 250 K). The two 
dimensional nature of the RSA allowed its graphical representation, which was used for material comparison and 
selection for the ITPS among hundreds of possible materials. 
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1. Introduction 

Throughout the past century dimensional analysis has been an extremely successful tool for solving scientific and 
engineering problems and for presenting results in a compact form. The first theoretical foundations of dimensional 
analysis were set by Vashy [1] and Buckingham [2] at the end of the 19th century. Since then and up to the 1960s 
nondimensional solutions, often in the form of graphs in nondimensionalized variables, have been among the major forms 
of transmitting knowledge among scientists and engineers. Indeed before the advent of the computer era, developing 
solutions to differential equations, modeling physical processes, was a long, complex task. When a solution to a physical 
problem was found it was published in its nondimensional form in order to make it applicable to the largest range of 
problems.  

This approach changed with the advent of widely available numerical simulation software and hardware starting in 
the 1960s. Under these new circumstances it becomes indeed much easier to obtain a solution directly to the problem one 
is interested in, without having to go through dimensional analysis and seek published solutions of the nondimensional 
equations. Numerical computer simulation gained huge popularity and dimensional analysis was slowly left behind 
except in areas where nondimensional parameters have a strong physical interpretation and allow us to differentiate 
between regimes of different numerical solution techniques (Mach number, Reynolds number etc.). 

With the increase in computational power, numerical simulation became not only feasible for single engineering 
analyses but it became increasingly possible to use these numerical techniques such as finite element (FE) in design 
optimization, often in conjunction with the use of surrogate models. One issue that appeared with the use of surrogate 
models is the “curse of dimensionality” which increases the number of experiments needed for a surrogate exponentially 
with the number of dimensions for a same accuracy.  



 
 

One way of reducing the dimensionality of the surrogate is by applying dimensional analysis to the physical problem 
the FE model and thus the surrogate is describing.  Several studies looked at the advantages of using dimensional analysis 
in conjunction with surrogates or response surface approximations. References [3]-[5], all show that by using intrinsic or 
nondimensional variables which are characteristic of the problem, better accuracy of the RSA can be obtained. For the 
same number of numerical simulations the reduction in the number of variables associated with dimensional analysis 
allows a fit with a higher order polynomial. Among the references cited none used FE to construct the RSA. Reference [4] 
used statistical data from a survey while reference [5], while evoking the possibility of using FE, used simple analytical 
objective functions to illustrate the advantages of the approach in terms of improving the accuracy of the RSA and 
reducing the number of experiments.  

In [6] Venter and Haftka gave an illustration of how dimensional analysis was directly used to reduce the number of 
variables of a RSA constructed from a FE buckling model of a plate with an abrupt change in thickness. The dimensional 
analysis was done directly on the governing equations and the boundary conditions solved by the FE. The approach 
reduced the number of variables of the RSA from nine to seven. However nondimensionalzing directly the governing 
equations and boundary conditions of a problem is not always easy and can introduce a significant number of 
nondimensional parameters, of which some might only have marginal influence on the design problem considered. 
Instead we may be able to discover the most important parameters from a simplified version of the equations. Applying 
dimensional analysis to this simplified problem allows to further reduce the number of parameters while only keeping the 
ones relevant to the design task considered.    

In the present paper we illustrate this approach on the example of a spacecraft atmospheric reentry transient thermal 
problem involving the maximum temperature during reentry. Dimensional analysis on a simplified problem in 
conjunction with a global sensitivity analysis allowed to reduce the number of variables that determined the maximum 
temperature from 15 parameters to 2 nondimensional parameters. A response surface approximation (RSA) of this 
temperature was constructed using a FE model, that doesn’t use any of the previous simplifications, and the ability of the 
2 dimensional RSA to represent all of the 15 initial variables was tested.  

In Section 2 we describe the thermal problem of atmospheric reentry and in Section 3 the FE model used. Then in 
Section 4 we use dimensional analysis on a simplified version of the thermal problem together with a global sensitivity 
analysis to determine the minimum number of nondimensional variables for the maximum temperature RSA. In Section 5 
we fit the data obtained from the accurate, non-simplified FE model with a response surface approximation function of the 
previously determined nondimensional parameters. We then compare in Section 6 the accuracy of the RSA with 
additional test points using the FE model. Finally we give in Section 7 a brief overview of how the RSA was used to carry 
out a materials selection for the design and optimization of an integrated thermal protection system (ITPS). Section 8 
presents concluding remarks. 
 
2. Thermal problem of atmospheric reentry  

An integrated thermal protection system (ITPS) is a proposed spacecraft system fulfilling both thermal protections 
requirements during reentry and structural requirements during all the phases of the mission. Thus in such a system the 
thermal protection function would be integrated with the structural function of the spacecraft. Our study involves an ITPS 
based on a corrugated core sandwich panel construction. The design of such an ITPS involves both thermal and structural 
constraints. In the present paper we focus on the thermal constraint represented by the maximum temperature of the 
bottom face sheet (BFS) of the ITPS panel. The combined thermo-structural approach is presented in a separate article [7]. 
A response surface approximation (RSA) of this maximum BFS temperature was needed in order to reduce optimization 
computational time.  

In order to construct the maximum BFS temperature RSA we developed a finite element model using the 
commercial FE software Abaqus. The corrugated core sandwich panel design as well, as the thermal problem of 
atmospheric reentry is shown in Figure 1. The ITPS panel is subject to an incident heat flux assumed to vary as shown in 
Figure 2. This heat flux is typical of a reusable launch vehicle (RLV). The general approach presented in the present paper 
would apply for different heat flux profiles.  

Radiation is also modeled on the top face sheet (TFS) with a relative emissivity of 0.8, which is typical for TPS 
exterior surfaces [8]. The BFS is assumed perfectly insulated, which is a worst case assumption, since if heat could leak 
through the BFS the maximum temperature would decrease, becoming less critical. The core of the sandwich panel is 
assumed to be filled with Saffil foam insulation, while we will explore different materials for the three main sections 
(TFS, BFS and Web), materials of which we want to determine the combination leading to an ITPS with the lowest 
maximum BFS temperature.  
 



 
 

 
Figure 1: Corrugated core sandwich panel design with representation of the thermal problem and geometric 

parameterization 
 

 
Figure 2: Incident heat flux (solid line) and convection (dash dot line) profile with reentry time on the TFS surface 

 
3. Finite element model of the thermal problem 

The thermal problem just described is modeled using the Abaqus FE software. The problem is modeled as a one 
dimensional heat transfer analysis as represented in Figure 3. The core of the sandwich panel has been homogenized using 
the rule of mixtures formulae given below: 
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where ρ stands for density, C for specific heat, k for conductivity, t for thickness, θ for the corrugation angle and p for the 
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length of a unit cell (cf. Figure 1).  The subscripts W and S represent structural Web material and Saffil foam, respectively, 
while no subscript represents the homogenized core. A stands for area of cross-section through which the heat flows and V 
for the volume of each section. 

 
Figure 3: 1D heat transfer model representation using homogenization (representation not to scale) 

 
It has been shown in reference [7] that such a one dimensional FE model can accurately predict the temperature 

distribution through the thickness of the sandwich panel, the maximum difference in temperature prediction between the 
1D model and a 2D model being less than 20K. For this preliminary design phase of the ITPS this difference is acceptable 
and a 1D model is used in the next parts for the thermal analyses. Radiation, convection and the incident heat flux (as 
shown in Figure 1 and 2) were modeled in the Abaqus 1D model using four steps (three for stage one of Figure 2 and one 
for stage two). 54 three node heat transfer link elements were used in the transient analyses.  
For this one-dimensional thermal model the governing equations and boundary conditions can be written as following: 
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 where ρ is the density, k the thermal conductivity and C the specific heat of the ITPS panel. Ti is the initial 
temperature of the panel before atmospheric reentry, ε the emissivity of the TFS while qi(t) is the heat influx and h(t) the 
convection coefficient at the TFS, which are time dependent, varying as shown in Figure 2. We note that most of the 
material properties are temperature dependent and due to the different materials in the different ITPS sections most 
material properties also depend on the position x. If we would have nondimensionalized directly the equations, due to 
these dependencies we would have obtained a high number of nondimensional parameters. To reduce to a minimum the 
number of parameters of the response surface the thermal problem will be studied in the next section under several 
assumptions which allow easier nondimensionalization of the equations as well as leaving out variables which have only 
little effect.  
 
4. Determining the minimum number of parameters for the temperature response surface 
4.1 Simplifying the problem 
 

One of our aims is to determine which materials are the best for use in the ITPS panel. The thermal model presented 
in the previous section involves 13 material parameters (specific heat Ci, conductivities ki and densities ρi of the TFS, 
BFS, Web and Saffil as well as the emissivity ε of the TFS) of which most are temperature dependent. Some of these 
parameters were fixed, including ε as well as all the foam parameters (the foam material has been fixed to Saffil, which 
has been determined in previous studies [9] and [10] as being the best suited foam for use in similar metallic thermal 
protection systems). Concerning the emissivity of the TFS, it depends more on surface treatments applied than on the 
nature of the TFS material (thus a typical value for this kind of application of 0.8 was used [8],[10]). Fixing these 
parameters leaves 9 variables to come from material selection. Describing temperature dependency of the parameters 
would increase this number further.   

In order to avoid an unnecessarily high dimensional space we wanted to reduce to a minimum the number of material 
parameter design variables. For this purpose, the heat transfer equations were studied under several simplifying 
assumptions that allowed not having to consider for the material selection process, material parameters that have a 
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negligible effect on the maximum BFS temperature. The following assumptions have been established and checked on a 
Nextel(TFS)-Zirconia(Web)-Aluminum(BFS) ITPS having the dimensions shown in Table 1. These dimensions were 
found in reference [7] to be the optimal geometry for an Inconel(TFS)-Ti6Al4V(Web)-Al(BFS) material combination (for 
details cf. reference [7]).  

 

Parameter tT 
(mm) 

tB 
(mm) 

tW 
(mm) 

θ 
(deg) 

d 
(mm) 

p 
(mm) 

Value 2.1 5.3 3.1 87 120 117 
Table 1: Dimensions of the ITPS used among other to establish the simplifying assumptions. These dimensions were 

optimal for an Inconel(TFS)-Ti6Al4V(Web)-Al(BFS) ITPS (cf. [7]) 
 
Considering the nature of the problem, following assumptions could be made: 
1.) The three thermal properties of the TFS (CTFS, kTFS and ρTFS) have negligible impact on the maximum BFS 
temperature, mainly due to the small thickness of the TFS (about 2.2mm compared to a total ITPS thickness of about 
120mm). This allowed removing CTFS, kTFS and ρTFS from the relevant parameters influencing the BFS temperature. 
2.) The temperature is approximately constant through the BFS, because the BFS thickness is small (typically 5mm thick 
compared to a total ITPS thickness of 120mm) and its conductivity is about one order of magnitude higher than that of the 
homogenized core. This allowed removing kBFS from the relevant parameters and simplifying the boundary condition at 
the BFS. 
3.) In order to avoid having a large number of material properties variables several assumptions were made concerning the 
temperature dependency of these material properties. In the FE model temperature dependency has been included for all 
materials but the largest temperature dependency was that of the Saffil foam. So for the TFS, Web and BFS materials 
constant properties were chosen as for Saffil the material properties were assigned the values at a representative 
temperature chosen such as to minimize the difference between the maximum BFS temperature when using the constant 
values and the one when using temperature dependent values. The representative temperature was first established on the 
ITPS design in Table 1 with a Nextel(TFS)-Zirconia(Web)-Aluminum(BFS) material combination and the effects of 
varying the materials were then found to be small enough to use this constant value for the range of materials we consider.  
 

It is important to note that these simplifying assumptions were used only in order to determine the minimum number 
of variables for the RSA, but the finite element analysis used to construct the experiments and validate the RSA did not 
incorporate any of these simplifying assumptions but used the accurate FE model presented in section 3. Furthermore, the 
success of the dimensional analysis does not depend on the assumptions leading to small errors. As long as the RSA that 
will be constructed changes approximately the same way as the exact temperature, a close to constant distance between 
them will not lead to significant errors since the RSA is fitted to the accurate FE experiments. 

These assumptions allowed to reduce the number of relevant material parameters influencing the maximum BFS 
temperature from 9 to 5: we now only have the density and specific heat of the BFS and Web as well as the conductivity of 
the Web. These assumptions also allowed to simplify the problem so that it can be easily nondimensionalized as will be 
shown next.  
 
4.2 Nondimensionalizing the thermal problem 
 

Under the previous simplifying assumptions the thermal problem is equivalent to the one shown in Figure 4 and its 
equations can be rewritten as follows. 
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Figure 4: Simplified thermal problem for dimensional 
analysis
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where L and LB are the thicknesses of the homogenized core and the BFS respectively; tend is the duration of the heat 
influx; ρ, C and k are the density, specific heat and conductivity of the homogenized core; ρB and CB those of the BFS. 
 

In order to nondimensionalize the equations of this problem we use the Vashy-Buckingham theorem (or Pi theorem) 
[1,2] to know the minimum number of nondimensional variables. The Vashy-Buckingham theorem states that we have to 
count the total number of variables and the corresponding number of dimensional groups. In our case we have the 
following: 
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We have a total of 12 variables in 4 dimensional groups (m, s, K, W). From the Vashy-Buckingham theorem we 

know that we can have a minimum of 12 – 4 = 8 nondimensional groups. We now have to determine the precise 
expressions of these parameters. By manually transforming the equations (9)-(12) of the thermal problem, the following 
non dimensional parameters have been constructed:  
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In terms of these nondimensional variables the thermal problem can be written in the following nondimensional form: 

Heat conduction equation:  
2
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The complete set of nondimensional variables needed for the considered problem is that given in equations 
(13)-(20). The non dimensional temperature Γ can be expressed function of the nondimensional distance ξ and the 
nondimensional time τ as well as function of five other non dimensional parameters. Since at the maximum BFS 
temperature we are at a fixed location and we are not interested in the time at which this maximum occurs, the non 
dimensional distance ξ and the nondimensional time τ ill not have to intervene in the maximum BFS temperature RSA.  

The physical interpretation of the other five nondimensional parameters given in equations (16)-(20) is the 
following. β, the Fourier number or a nondimensional thermal diffusivity, is the ratio between the rate of heat conduction 
and the rate of heat storage (thermal energy storage) of the homogenized core. γ is the ratio between the heat capacity of 
the BFS and heat capacity of the homogenized core, κ the ratio between the rate of radiation and the rate of heat 
conduction. φ is the ratio between the incident heat flux and the rate of heat conduction, or can be seen as a 
nondimensional heat flux. Finally Bi, the Biot number, is the ratio between the rate of convection and the rate of heat 
conduction.  

We can notice that the three nondimensional parameters κ, φ and Bi are all proportional to L/k while all the other 
parameters in κ, φ and Bi are fixed in our study. Indeed we are only interested in varying the materials and the geometry 
but the initial temperature Ti, the emissivity ε, the incident heat flux profile qi(t) and the convection film coefficient profile 
h(t) are all fixed in the present study (cf. Figure 2 for the profiles of qi(t) and h(t) used). This means that for our purpose we 



 
 
can consider only one of these three nondimensional parameters: κ for example. 

Summing up, the dimensional analysis allowed us to determine that we can construct a response surface 
approximation of the maximum BFS temperature function of the three parameters β, γ and κ. However after we 
constructed a first RSA in these three parameters it seemed that the maximum BFS temperature is relatively insensitive to 
κ. To check this we conducted a global sensitivity analysis, using Sobol’s approach [11]. We found out that variable β 
accounts for 35.7% of the model variance, variable γ accounts for 64.1% of the model variance while variable κ accounts 
for only 0.06% of the model variance. This means that we can explain almost the entire behavior of the model with only 
the two variables β and γ. 

From a physical point of view the fact that κ has a negligible role can be explained as follows: κ is proportional to L/k 
which is also present in β. That means that if we want to change κ while keeping β constant we need to also modify tend 
(which is the only other variable in β that does not intervene neither in γ nor in κ). If we increase κ by decreasing k we need 
to also increase tend by a certain amount to keep β constant. Decreasing k has the effect of lowering the BFS temperature 
while increasing tend has the effect of making it higher. From the global sensitivity analysis it turns out that these two 
effects cancel each other out which explains why κ has very little impact.  
 
5. Maximum BFS temperature RSA 

A response surface approximation (RSA) in the two nondimensional parameters β and γ was now constructed. The 
RSA was needed in order to reduce the computational cost for the comparison of different material combinations. Indeed 
there are about 30,000 possible material combinations, which would have taken about 2500 hours if each would have had 
to be evaluated using the Abaqus FE model. Instead using the response surface approximation allows to greatly reduce the 
computational time needed (to about 6 hours). 

We chose as design of experiments (DoE) a simple 11x11 grid. The boundaries for each variable are given in Table 
2 (the bounds were chosen so that all material combinations under consideration fell inside these values for the geometry 
values fixed in Table 1). The choice of a grid was done based on the relatively small computational time needed for each 
simulation (about 3min). Furthermore an 11x11 grid, which is a relatively dense DoE, allows a good quality of a fit thus 
leaving as the major remaining error in the RSA only that coming from the reduction from 15 to 2 variables through the 
nondimensionalization on the simplified thermal problem. We settled on an 11x11 grid after comparing the RSA obtained 
with this grid with an RSA obtained with a 6x6 grid. Comparison at 200 latin hypersquare points of these two RSAs 
yielded a mean value of the difference of only 0.1%.  
 

Variable β γ 
Range 0.1-0.5 0.6-2.4 

Table 2: Ranges of the non dimensional design variables 
 

The model used for the computation of the maximum BFS temperature for each experiment is the Abaqus 1D model 
described in section 3, which does not use any of the simpliflying assumptions of section 4. Abaqus was coupled with 
Matlab for an automated run through all the experiments. The maximum BFS temperatures resulting from the DoE was 
fitted with a cubic spline approximation. The response surface of the maximum BFS temperature function of β and γ is 
represented in Figure 5. One of the advantages of having only two variables in the RSA is an easy graphical representation 
of the results. This graphical representation possibility will be later used for the material selection as well. 

 
Figure 5: Maximum BFS temperature two variables response surface 

TMax BFS (K) 

2
endkt

L C
β

ρ
=

B B BL C
L C
ρ γ
ρ

=



 
 

 
 

6. Accuracy of the RSA 
The two variable RSA accounts for a total of 15 parameters: the nine thermal material properties (Ci, ki, ρi) as well as 

for the six geometric parameters of the ITPS panel (ti, p, d, θ) as is shown in equations (25) and (26). These equations were 
obtained by substituting back the expressions of ρ, C and k from equations (1)-(3) into the equations (16) and (17) of the 
nondimensional parameters β and γ. 
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To test the accuracy of the RSA we compared it with the accurate FE analyses that do not involve any of the 

simplifying assumptions made for nondimensionalization at 855 latin hypersquare points spread in the 15-dimensional 
variables space (9 materials properties and 6 geometric parameters) with the bounds given in Table 3. The mean of the 
absolute difference was 2.31K with a standard deviation of 2.01K, while the maximum difference observed among the 
855 points was 14.7K (the range of the RSA is about 250K).  
 

 kWeb ρWeb CWeb kBFS ρBFS CBFS kTFS ρTFS CTFS tT tB tW θ d p 
LB 2 2500 500 2 1550 900 3 2000 500 1E-3 4.6E-3 2.24E-3 80 0.102 0.099
UB 7 6000 950 50 3000 1820 50 5000 1700 3.7E-3 7E-3 4.16E-3 90 0.150 0.150

Table 3: Lower bounds (LB) and upper bounds (UB) used for sampling in the 15 variables space. All units are SI. 
 

It can be noticed that the mean of the absolute error is low, however in some cases the error can be much higher, the 
maximum error being about 6 times higher than the mean. To gain more insight of where the maximum errors occur 
anti-optimization [12,13] of the error in the RSA was carried out. The anti-optimization process looks to find the places 
with the highest error in the RSA and by looking at the designs corresponding to the antioptimum we can understand what 
causes these errors. Antioptimizations with a fixed material combinations and the geometry allowed to vary within the 
bounds given in Table 3 were carried out and showed that the RSA has poor accuracy when the geometry is far away from 
the one for which the representative temperature of assumption 3.) (cf. section 4.1) was established. For these unusual 
geometries the representative temperature shifts due to temperature dependence of the core; this shift is not accounted for 
by the RSA which explains the poor accuracy for these geometries. If we wanted to improve the accuracy of the RSA for 
a large range of geometries we would have to better account for the temperature dependence of the core by introducing 
additional nondimensional parameters. For the geometry for which we will use the RSA in the next section however the 
maximum error was 7.6 K, which was considered acceptable for the purpose of material selection.      
 
7. Applying the RSA for comparison of materials for the ITPS 

The easy graphical representation of the two dimensional RSA was used next for comparison of alternate materials 
for the ITPS sections. We seek materials providing a low maximum BFS temperature. The dimensions of the ITPS are 
once again fixed to the values in Table 1. 

In order to have an exhaustive search, the material database software CES Selector 2005 EduPack by Granta Design 
was used. Several constraints on materials properties were imposed during the search in the database, constraints on 
properties such as maximum service temperature, fracture toughness and Young’s modulus, in order to avoid 
unreasonable materials. These constraints reduced the number of possible materials to 235 for the BFS and 127 for the 
Web.  

To compare the Web materials, the BFS material was fixed to Aluminum alloy 2024 and the potential Web materials 
were plotted in the (β, γ) plane with the contours of the maximum temperature superposed as shown in Figure 7, allowing 
comparison of the different mateials with respect to the corresponding maximum BFS temperature. This figure shows that 
materials such as alumino-silicate/Nextel 720 composites or Zirconia ceramics provide a significant reduction in the 
maximum BFS temperature compared to metals such as titanium alloys, which were considered in previous designs (cf. 
[7]). Accordingly alumino-silicate/Nextel 720 composites and Zirconia were selected for further study as good potential 
candidates for the Web section of the ITPS panel.  

A complete materials comparison and selection study using this approach is presented in reference [14]. This 
reference presents selection of potential materials for all of the three sections (TFS, Web and BFS) and also includes an 
optimization of the geometry of the ITPS panel with respect to mass per unit area, leading to a ranking of the different 
material combinations for the ITPS. 



 
 

 
Figure 7: Thermal comparison of materials suitable for the Web using the contour plot of the maximum BFS 

temperature RSA. The ITPS dimensions are fixed to the values in Table 1 and BFS material is fixed to 
Aluminum alloy 2024. An * denotes generic material names regrouping several actual materials. 

 
8. Conclusions 

The present paper gave an illustration of how dimensional analysis can be applied to significantly reduce the number 
of variables used for a response surface approximation (RSA). Finite element analyses model a set of underlying 
equations which can be nondimensionalized, thus reducing the number of parameters describing the problem. This can 
greatly help in constructing a response surface approximation function of fewer variables.  

Often though nondimensionalzing the exact equations involved in the finite element analysis can be relatively 
cumbersome or lead to too many nondimensional parameters. In this case the process can be aided by simplifying 
assumptions or a global sensitivity analysis that help further reduce the number of nondimensional parameters by keeping 
only the parameters that control most of the variation of the quantity of interest in the original problem. It is important to 
note that the simplifying assumptions are made only to determine the nondimensional parameters but the FE model used 
to construct the experiments for the RSA does not incorporate them, thus providing additional robustness.  

In the presented example this approach was applied with success to a thermal heat transfer problem for an integrated 
thermal protection system (ITPS) and dimensional analysis in combination with several simplifying assumptions and a 
global sensitivity analysis allowed to reduce the number of parameters of the response surface approximation of the 
maximum temperature from 15 to only 2. The RSA was tested with the 15 variables being allowed to vary within 
relatively large bounds and the error entailed by doing so was less than 14.7 degrees K (for a range of the RSA of 250K) 
when compared to the accurate FE model not involving any of the simplifying assumptions. The two-dimensional RSA 
was used for material comparison and selection for the ITPS panel among hundreds of possible materials and for the range 
of variables and materials considered on the application example the maximum error in the RSA was 7.6K. 
 
Acknowledgments 

The authors would like to thank Tushar Goel for his assistance with global sensitivity analysis. They also gratefully 
acknowledge financial support by the NASA CUIP (formerly URETI) Grant NCC3-994 to the Institute for Future Space 
Transport (IFST) at the University of Florida. The cognizant program manager is Claudia Meyer at NASA Glenn 
Research Center. 



 
 
 
References 
[1] Vashy, A., "Sur les lois de similitude en physique", Annales télégraphiques, vol. 19, pp. 25, 1892 
[2] Buckingham, E., “On Physically Similar Systems; Illustration of the Use of Dimensional Equations”, Phys. Review 

4, pp. 345-376, 1914 
[3] Kaufman, M., Balabanov, V., Grossman, B., Mason, W. H., Watson, L. T., and Haftka, R. T., “Multidisciplinary 

Optimization via Response Surface Techniques,” Proceedings of the 36th Israel Conference on Aerospace Sciences 
(Israel), Omanuth, Haifa, Israel, 1996, pp. A-57–A-67 

[4] Vignaux, G.A., Scott, J.L., “Simplifying regression models using dimensional analysis”, Austr. & New Zealand J. 
Stat., Vol. 41(1), pp. 31-41,1999 

[5] Lacey, D. and Steele, C., “The use of dimensional analysis to augment design of experiments for optimization and 
robustification”, Journal of Engineering Design Vol.17(1), pp. 55-73, 2006 

[6] Venter, G., Haftka, R.T. and Starnes, J.H, “Construction of response surface approximations for design 
optimization”, Aiaa Journal, Vol. 36(12), pp. 2242-2249, 1998 

[7] Bapanapalli, S.K., Martinez, O.M., Gogu, C., Sankar, B.V., Haftka, R.T., Blosser, M.L., “Analysis and design of 
corrugated core sandwich panels for thermal protection systems of space vehicles”, AIAA Paper 2006-1942, 47th 
AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, May 2006 

[8] Myers, D., Martin, C., Blosser, M.L., “Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and 
Ceramic Blanket Thermal Protection Systems (TPS)”, NASA technical report, 1998 

[9] Blosser, M.L., “Development of Advanced Metallic, Thermal-Protection-System Prototype Hardware”, Journal of 
Spacecraft and Rockets, Vol. 41, No. 2, Mar-Apr 2004, pp 183-194 

[10] Poteet, C.C., Abu-Khajeel, H., Hsu, S-Y, “Preliminary thermal-mechanical sizing of a metallic thermal protection 
system,” Journal of Spacecraft and Rockets, Vol. 41, No. 2, Mar – Apr 2004, pp. 173-182 

[11] Sobol, I. M., “Sensitivity Estimates for Nonlinear Mathematical Models,” Mathematical Modeling and 
Computational Experiment, New York, NY, John Wiley & Sons, Vol. 1, 1993, pp 407-414 

[12] Elishakoff, I., “Convex Versus Probabilistic Modeling of Uncertainty in Structural Dynamics,” Structural Dynamics 
Recent Advances, edited by M. Petyt, H. F. Wolfe, and C. Mei, Keynote Lecture, Elsevier, London,1991, pp. 3–21 

[13] Elishakoff, I., Haftka, R.T., Fang, J., “Structural design under bounded uncertainty-optimization with 
anti-optimization”, Computers & structures, vol. 53, no 6, 1994, pp. 1401-1405 

[14] Gogu, C., Bapanapalli, S.K., Haftka, R.T., Sankar, B.V., “Comparison of Materials for Integrated Thermal Protection 
Systems for Spacecraft Reentry”, AIAA Paper 2007-1860, 3rd AIAA Multidisciplinary Design Optimization 
Specialist Conference, Honolulu, April 2007 

 
 


